

F O U N D A T I O N

®

IO-Link Community and OPC

Foundation:

OPC Unified Architecture

for

IO-Link

Companion Specification

Release 1.0

December 01, 2018

http://www.io-link.com/

Release 1.0 – ii – OPC UA for IO-Link

CONTENTS

1 Scope ... 1

2 Normative References .. 1

3 Terms, Definitions, and Conventions .. 2

3.1 Overview ... 2

3.2 OPC UA for IO-Link Information Model Terms ... 2

3.2.1 IO-Link Device ... 2

3.2.2 IO-Link Master ... 2

3.3 Abbreviations and Symbols ... 2

3.4 Conventions used in this Document ... 3

3.4.1 Conventions for Terms... 3

3.4.2 Conventions for Node Descriptions .. 3

3.4.3 NodeIds and BrowseNames ... 4

3.4.3.1 NodeIds .. 4

3.4.3.2 BrowseNames ... 5

3.4.4 Common Attributes .. 5

3.4.4.1 General ... 5

3.4.4.2 Objects ... 5

3.4.4.3 Variables ... 5

3.4.4.4 VariableTypes ... 6

3.4.4.5 Methods .. 6

4 General Information on IO-Link and OPC UA .. 7

4.1 Introduction to IO-Link ... 7

4.1.1 What is IO-Link? .. 7

4.1.2 Basics of IO-Link ... 7

4.1.3 Device Description ... 7

4.2 Introduction to OPC Unified Architecture ... 8

4.2.1 What is OPC UA? .. 8

4.2.2 Basics of OPC UA ... 8

4.2.3 Information Modelling in OPC UA .. 9

4.2.3.1 Concepts... 9

4.2.3.2 Graphical Notation .. 10

4.2.4 OPC UA Profiles .. 11

4.2.5 Namespaces .. 11

4.2.6 Companion Specifications ... 11

5 Combining OPC UA and IO-Link ... 12

5.1 System Architecture .. 12

5.2 Use Cases ... 12

5.2.1 UC.001: Configure an IO-Link Master .. 12

5.2.2 UC.002: Find IO-Link Masters .. 12

5.2.3 UC.003: Find IO-Link Devices .. 13

5.2.4 UC.004: Initial commissioning of IO-Link Device .. 13

5.2.5 UC.005: Configure device metadata .. 13

5.2.6 UC.006: Configure IO-Link subscriptions ... 13

5.2.7 UC.007: Disconnection of IO-Link Device .. 13

5.2.8 UC.008: Read product identification ... 13

5.2.9 UC.009: Read diagnostics data .. 14

5.2.10 UC.010: Read operating and failure statistics .. 14

OPC UA for IO-Link iii Release 1.0

5.2.11 UC.011: Reset operating and failure statistics ... 14

5.2.12 UC.012: Optimize machine settings ... 14

5.2.13 UC.013: Plant and machine status supervision .. 14

5.2.14 UC.014: Faulty device replacement ... 15

5.2.15 UC.015: Firmware update .. 15

5.2.16 UC.016: Asset Management .. 15

5.2.17 UC.017: Cloud-connectivity at Edge Gateway .. 15

6 IO-Link Information Model Overview ... 15

6.1 Modelling Concepts ... 15

6.1.1 IO-Link Master ... 15

6.1.2 IO-Link Port ... 16

6.1.3 IO-Link Device ... 16

6.1.4 IO-Link Events ... 16

6.1.5 Block operations: Up- and Download ... 16

6.1.6 Managing IODDs ... 17

6.1.7 Relating IO-Link Devices to IO-Link Ports .. 17

6.2 Model Overview ... 19

6.3 Mapping IODD information to OPC UA ObjectTypes .. 22

7 OPC UA ObjectTypes ... 23

7.1 IOLinkDeviceType ObjectType Definition ... 23

7.1.1 Example .. 23

7.1.2 Overview ... 25

7.1.3 Variables of ParameterSet ... 28

7.1.4 Methods of MethodSet ... 30

7.1.4.1 ReadISDU ... 30

7.1.4.2 WriteISDU ... 31

7.1.4.3 SystemCommand .. 31

7.1.4.4 ParamUploadFromDeviceStart .. 32

7.1.4.5 ParamUploadFromDeviceStop .. 32

7.1.4.6 ParamDownloadToDeviceStart .. 32

7.1.4.7 ParamDownloadToDeviceStop .. 33

7.1.4.8 ParamDownloadToDeviceStore ... 33

7.1.4.9 ParamBreak .. 33

7.1.4.10 DeviceReset.. 33

7.1.4.11 ApplicationReset ... 33

7.1.4.12 RestoreFactorySettings ... 34

7.2 IOLinkIODDDeviceType ... 34

7.2.1 General information on IODDs ... 34

7.2.2 Example .. 34

7.2.3 Overview ... 36

7.2.4 Variables of the ParameterSet Object .. 37

7.2.5 Variables of the IODDInformation Object ... 37

7.2.6 Variables of the DeviceTypeImage Object ... 37

7.3 ObjectTypes generated based on IODDs ... 38

7.3.1 General ... 38

7.3.2 NodeId of generated ObjectTypes and their InstanceDeclarations 38

7.3.3 Namespace of the BrowseNames .. 38

7.3.4 Mapping to InstanceDeclarations inherited from
IOLinkIODDDeviceType ... 38

Release 1.0 – iv – OPC UA for IO-Link

7.3.5 Mapping of IODD Menus .. 39

7.3.6 Mapping of IODD Variables ... 40

7.3.7 Mapping of Methods from IODD Menus.. 43

7.3.8 Mapping of StdVariableRef and StdRecordItemRef 44

7.3.9 Mapping of ProcessDataCollection and ProcessDataRefCollection 45

7.3.10 Mapping of DirectParameterOverlay .. 47

7.3.11 Mapping of Default Values ... 47

7.3.12 Mapping of DeviceVariantCollection .. 48

7.3.13 Mapping of EventCollection ... 49

7.4 Creation of Instances based on ObjectTypes generated out of IODDs 49

7.5 IOLinkMasterType ObjectType Definition ... 52

7.5.1 Example .. 52

7.5.2 Overview ... 54

7.5.3 Variables of ParameterSet ... 57

7.5.4 Methods of MethodSet ... 58

7.5.4.1 Restart .. 58

7.5.4.2 ResetStatisticsOnAllPorts ... 59

7.6 IOLinkPortType ObjectType Definition ... 59

7.6.1 Example .. 59

7.6.2 Overview ... 61

7.6.3 Variables of ParameterSet ... 63

7.6.4 Methods of MethodSet ... 67

7.6.4.1 ResetStatistics .. 67

7.6.4.2 UpdateConfiguration ... 68

7.7 DeviceVariantType .. 69

8 OPC UA Objects, Variables and Methods ... 69

8.1 General ... 69

8.2 IODDManagement Object .. 69

8.3 RemoveIODD Method .. 71

8.4 IOLinkMasterSet Object ... 72

9 OPC UA EventTypes .. 72

9.1 General ... 72

9.2 IOLinkEventType ... 73

9.3 IOLinkDeviceEventType .. 73

9.4 IOLinkIODDDeviceEventType .. 74

9.5 IOLinkPortEventType ... 75

9.6 IOLinkMasterEventType .. 76

9.7 IOLinkAlarmType ... 76

9.8 IOLinkDeviceAlarmType .. 77

9.9 IOLinkIODDDeviceAlarmType .. 78

9.10 IOLinkPortAlarmType .. 79

9.11 IOLinkMasterAlarmType .. 79

10 OPC UA VariableTypes .. 81

10.1 ProcessDataVariableType ... 81

11 OPC UA ReferenceTypes ... 81

11.1 HasIdentificationMenu ... 81

11.2 HasParameterMenu ... 82

11.3 HasObservationMenu .. 82

OPC UA for IO-Link v Release 1.0

11.4 HasDiagnosisMenu .. 83

12 Mapping of DataTypes .. 84

12.1 Overview ... 84

12.2 Primitive DataTypes .. 84

12.2.1 Boolean DataType ... 84

12.2.2 Integer DataTypes ... 84

12.2.3 Float DataType .. 85

12.2.4 String DataType ... 86

12.2.5 Byte[] DataType ... 86

12.2.6 DateTime DataType ... 86

12.2.6.1 Overview ... 86

12.2.6.2 Conversion from IO-Link TimeT to OPC UA DateTime 87

12.2.6.3 Conversion from OPC UA DateTime to IO-Link TimeT 87

12.2.6.4 Conversion of special values (Summary) 88

12.2.7 Duration DataType ... 88

12.2.7.1 Duration DataType used for TimeSpanT 88

12.2.7.2 Duration DataType used for values coded with 1 byte 89

12.3 Mapping of Records and Arrays ... 89

12.3.1 Overview ... 89

12.3.2 Structure DataType.. 89

12.3.3 Array DataTypes .. 91

12.4 Enumeration and OptionSet DataTypes ... 91

12.4.1 EncodingEnum .. 91

13 Standardized Properties and Mapping to the Properties .. 92

13.1 InstrumentRange ... 92

13.2 InstrumentRanges ... 92

13.3 EnumValues .. 92

13.4 TrueState and FalseState .. 92

13.5 Encoding ... 92

13.6 DisplayFormat ... 93

14 ISDU Error Handling ... 94

14.1 Overview ... 94

14.2 Occurrence of ISDU Errors .. 94

14.3 Mapping of ISDU Errors in DiagnosticInfo .. 94

14.4 Content of localizedText in DiagnosticInfo ... 95

14.4.1 No IODD information available ... 95

14.4.2 IODD information available .. 95

15 Profiles and Namespaces ... 96

15.1 Namespace Metadata .. 96

15.1.1 Namespace http://opcfoundation.org/UA/IOLink/ .. 96

15.1.2 Namespace http://opcfoundation.org/UA/IOLink/IODD/ 96

15.2 Conformance Units and Profiles .. 97

15.3 Server Facets .. 97

15.3.1 IO-Link Event Facet ... 97

15.3.2 IO-Link Base Condition Facet .. 97

15.3.3 IO-Link Alarm Facet ... 98

15.4 Server Profiles .. 98

15.4.1 IO-Link Base Profile ... 98

Release 1.0 – vi – OPC UA for IO-Link

15.4.2 IO-Link Advanced Profile ... 99

15.5 Client Facets ... 99

15.6 Handling of OPC UA namespaces ... 99

Annex A (normative): OPC UA for IO-Link Namespace and Mappings 101

A.1 Namespace and identifiers for OPC UA for IO-Link Information Model 101

A.2 Profile URIs for OPC UA for IO-Link Information Model 102

Annex B (informative): Aggregation as System Architecture Option 103

B.1 Overview ... 103

B.2 System Architecture .. 103

Annex C (normative): EngineeringUnits ... 105

C.1 Overview ... 105

OPC UA for IO-Link vii Release 1.0

FIGURES

Figure 1 – System Architecture with IO-Link (Example) ... 7

Figure 2 – The Scope of OPC UA within an Enterprise .. 9

Figure 3 – The Relationship between Type Definitions and Instances 10

Figure 4 – The OPC UA Information Model Notation ... 11

Figure 5 – System Architecture of IO-Link and OPC UA (Example) 12

Figure 6 – State machine describing if an Object is connected to an IO-Link Port 18

Figure 7 – IO-Link Information Model overview (Structure) .. 20

Figure 8 – IO-Link Information Model overview (Events) ... 21

Figure 9 – AddressSpace entry points ... 22

Figure 10 – Example of Simplified Mapping of IODD Menus to OPC UA Functional
Groups .. 23

Figure 11 – Example instance of IOLinkDeviceType (no optional InstanceDeclarations
shown and some mandatory Methods left out) .. 24

Figure 12 – Example instance of IOLinkIODDDeviceType (no optional
InstanceDeclarations shown) .. 35

Figure 13 – Example on how to map IODD Menus from UserInterface 40

Figure 14 – Example on how to map IODD Menus containing IODD Menus 40

Figure 15 – Example on how to map Variables .. 41

Figure 16 – Example on how to map Variables with different VariableRefs 42

Figure 17 – Example on how to map Variables with RecordItemRefs 43

Figure 18 – Example on how to map IODD Buttons to OPC UA Methods 44

Figure 19 – Example on how to map IODD ProcessDataCollection 47

Figure 20 – Example on how to map Default Values ... 48

Figure 21 – Example on how to map DeviceVariantCollection ... 48

Figure 22 – Example of an Object based on an IODD ... 51

Figure 23 – Example of an Object based on an IODD using different VariableRefs 52

Figure 24 – Example instance of IOLinkMasterType (only mandatory
InstanceDeclarations) ... 53

Figure 25 – Example instance of IOLinkPortType (only mandatory
InstanceDeclarations) ... 60

Figure 26 – Example AddressSpace containing the IODDManagement Object 70

Figure 27 – System Architecture using an OPC UA aggregation server for IODD
capabilities (Example) ... 103

Release 1.0 viii OPC UA for IO-Link

TABLES

Table 1 – Examples of DataTypes ... 3

Table 2 – Type Definition Table .. 4

Table 3 – Common Node Attributes ... 5

Table 4 – Common Object Attributes ... 5

Table 5 – Common Variable Attributes .. 6

Table 6 – Common VariableType Attributes .. 6

Table 7 – Common Method Attributes ... 6

Table 8 – IOLinkDeviceType Definition ... 25

Table 9 – References of Identification Object .. 26

Table 10 – Mapping of IO-Link Device Status to OPC UA DeviceHealth 26

Table 11 – References of General Object ... 27

Table 12 – ParameterSet of IOLinkDeviceType ... 28

Table 13 – Properties of ApplicationSpecificTag ... 29

Table 14 – Properties of FunctionTag ... 29

Table 15 – Properties of LocationTag .. 29

Table 16 – MethodSet of IOLinkDeviceType .. 30

Table 17 – IOLinkIODDDeviceType Definition ... 36

Table 18 – ParameterSet of IOLinkIODDDeviceType .. 37

Table 19 – IODDInformation of IOLinkIODDDeviceType .. 37

Table 20 – DeviceTypeImage of IOLinkIODDDeviceType .. 38

Table 21 – Mapping of StdVariableRefs to IOLinkDeviceType Instance Declarations 44

Table 22 – Mapping of StdRecordItemRefs to IOLinkDeviceType Instance Declarations 45

Table 23 – IOLinkMasterType Definition .. 54

Table 24 – References of Identification Object .. 55

Table 25 – References of Capabilities Object .. 55

Table 26 – References of Management Object .. 55

Table 27 – References of Statistics Object .. 55

Table 28 – ParameterSet of IOLinkMasterType ... 57

Table 29 – Defined elements of EnumStrings array of MasterType Variable 58

Table 30 – MethodSet of IOLinkMasterType .. 58

Table 31 – IOLinkPortType Definition .. 61

Table 32 – References of Capabilities Object .. 62

Table 33 – References of Configuration Object ... 62

Table 34 – References of ConfiguredDevice Object .. 63

Table 35 – References of Information Object .. 63

Table 36 – References of SIOProcessData Object .. 63

Table 37 – References of Statistics Object .. 63

Table 38 – ParameterSet of IOLinkPortType ... 64

Table 39 – Defined elements of EnumStrings array of PortClass Variable 64

Table 40 – Defined elements of EnumStrings array of PortMode Variable 65

Table 41 – Defined elements of OptionSetValues array of Quality Variable 66

Table 42 – Defined elements of EnumStrings array of Status Variable 66

OPC UA for IO-Link ix Release 1.0

Table 43 – MethodSet of IOLinkPortType .. 67

Table 44 – DeviceVariantType Definition... 69

Table 45 – IODDManagement Definition ... 70

Table 46 – IOLinkMasterSet Definition .. 72

Table 47 – IOLinkEventType Definition ... 73

Table 48 – IOLinkDeviceEventType Definition ... 73

Table 49 – IOLinkIODDDeviceEventType Definition .. 74

Table 50 – IOLinkPortEventType Definition ... 75

Table 51 – Message texts for specific IOLinkEventCode values .. 75

Table 52 – IOLinkMasterEventType Definition ... 76

Table 53 – IOLinkAlarmType Definition ... 76

Table 54 – IOLinkDeviceAlarmType Definition ... 77

Table 55 – IOLinkIODDDeviceAlarmType Definition .. 78

Table 56 – IOLinkPortAlarmType Definition ... 79

Table 57 – IOLinkMasterAlarmType Definition ... 79

Table 58 – ProcessDataVariableType Definition .. 81

Table 59 – HasIdentificationMenu ReferenceType .. 82

Table 60 – HasParameterMenu ReferenceType .. 82

Table 61 – HasObservationMenu ReferenceType .. 82

Table 62 – HasDiagnosisMenu ReferenceType ... 83

Table 63 – Mapping of Integer and UInteger data types .. 84

Table 64 – OPC UA DateTime to IO-Link TimeT – Special values ... 88

Table 65 – IO-Link TimeT to OPC UA DateTime – Special values ... 88

Table 66 – Mapping of data types used in IODD Record ... 90

Table 67 – EncodingEnum Values ... 91

Table 68 – EncodingEnum Definition... 91

Table 69 – Mapping of IODD ValueRange to OPC UA Range .. 92

Table 70 – Mapping of ISDU Errors in DiagnosticInfo .. 94

Table 71 – NamespaceMetadata Object for this Specification ... 96

Table 72 – NamespaceMetadata Object for this Specification ... 96

Table 73 – IO-Link Event Facet ... 97

Table 74 – Optional Facets for IO-Link Event Facet .. 97

Table 75 – IO-Link Base Condition Facet .. 97

Table 76 – Optional Facets for IO-Link Base Condition Facet ... 97

Table 77 – IO-Link Alarm Facet... 98

Table 78 – Optional Facets for IO-Link Alarm Facet .. 98

Table 79 – IO-Link Base Profile .. 98

Table 80 – Optional Facets for IO-Link Base Profile .. 99

Table 81 – IO-Link Advanced Profile ... 99

Table 82 – Namespaces used in an OPC UA for IO-Link Server .. 100

Table 83 – Namespaces used in this specification .. 100

Table 84 – Profile URIs ... 102

Release 1.0 x OPC UA for IO-Link

Figure 1 – System Architecture with IO-Link (Example) ... 7

Figure 2 – The Scope of OPC UA within an Enterprise .. 9

Figure 3 – The Relationship between Type Definitions and Instances 10

Figure 4 – The OPC UA Information Model Notation ... 11

Figure 5 – System Architecture of IO-Link and OPC UA (Example) 12

Figure 6 – State machine describing if an Object is connected to an IO-Link Port 18

Figure 7 – IO-Link Information Model overview (Structure) .. 20

Figure 8 – IO-Link Information Model overview (Events) ... 21

Figure 9 – AddressSpace entry points ... 22

Figure 10 – Example of Simplified Mapping of IODD Menus to OPC UA Functional
Groups .. 23

Figure 11 – Example instance of IOLinkDeviceType (no optional InstanceDeclarations
shown and some mandatory Methods left out) .. 24

Figure 12 – Example instance of IOLinkIODDDeviceType (no optional
InstanceDeclarations shown) .. 35

Figure 13 – Example on how to map IODD Menus from UserInterface 40

Figure 14 – Example on how to map IODD Menus containing IODD Menus 40

Figure 15 – Example on how to map Variables .. 41

Figure 16 – Example on how to map Variables with different VariableRefs 42

Figure 17 – Example on how to map Variables with RecordItemRefs 43

Figure 18 – Example on how to map IODD Buttons to OPC UA Methods 44

Figure 19 – Example on how to map IODD ProcessDataCollection 47

Figure 20 – Example on how to map Default Values ... 48

Figure 21 – Example on how to map DeviceVariantCollection ... 48

Figure 22 – Example of an Object based on an IODD ... 51

Figure 23 – Example of an Object based on an IODD using different VariableRefs 52

Figure 24 – Example instance of IOLinkMasterType (only mandatory
InstanceDeclarations) ... 53

Figure 25 – Example instance of IOLinkPortType (only mandatory
InstanceDeclarations) ... 60

Figure 26 – Example AddressSpace containing the IODDManagement Object 70

Figure 27 – System Architecture using an OPC UA aggregation server for IODD
capabilities (Example) ... 103

OPC UA for IO-Link xi Release 1.0

IO LINK COMMUNITY / OPC FOUNDATION

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

• This document is provided "as is" by the OPC Foundation and the IO-Link Community.

• Right of use for this specification is restricted to this specification and does not grant rights of use for
referred documents.

• Right of use for this specification will be granted without cost.

• This document may be distributed through computer systems, printed or copied as long as the content
remains unchanged and the document is not modified.

• OPC Foundation and IO-Link Community do not guarantee usability for any purpose and shall not be made
liable for any case using the content of this document.

• The user of the document agrees to indemnify OPC Foundation and IO-Link Community and their officers,
directors and agents harmless from all demands, claims, actions, losses, damages (including damages from
personal injuries), costs and expenses (including attorneys' fees) which are in any way related to activities
associated with its use of content from this specification.

• The document shall not be used in conjunction with company advertising, shall not be sold or licensed to
any party.

• The intellectual property and copyright is solely owned by the OPC Foundation and the IO -Link Community.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OPC or IO-Link Community
specifications may require use of an invention covered by patent rights. OPC Foundation or IO -Link Community shall
not be responsible for identifying patents for which a license may be required by any OPC or IO-Link Community
specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OPC or IO-Link Community specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OPC FOUDATION NOR IO-Link Community MAKES NO WARRANTY OF ANY KIND,
EXPRESSED OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OPC FOUNDATION NOR IO-Link
Community BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by y ou.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject
to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the
Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer
Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor /
manufacturer are the OPC Foundation, 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830

COMPLIANCE

The combination of IO-Link Community and OPC Foundation shall at all times be the sole entities that may authorize
developers, suppliers and sellers of hardware and software to use certification marks, trademarks or other special
designations to indicate compliance with these materials as specified within this document. Products developed using
this specification may claim compliance or conformance with this specification if and o nly if the software satisfactorily
meets the certification requirements set by IO-Link Community or the OPC Foundation. Products that do not meet
these requirements may claim only that the product was based on this specification and must not claim complian ce
or conformance with this specification.

Release 1.0 xii OPC UA for IO-Link

TRADEMARKS

Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have
not been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity
and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of Germany.

This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior
understanding or agreement (oral or written) relating to, this specification.

OPC UA for IO-Link 1 Release 1.0

1 Scope

This specification was created by a joint working group of the OPC Foundation and IO-Link
Community. It defines an OPC UA Information Model to represent and access IO-Link Devices
and IO-Link Masters.

OPC Foundation

OPC is the interoperability standard for the secure and reliable exchange of data and
information in the industrial automation space and in other industries. It is platform independent
and ensures the seamless flow of information among devices from multiple vendors. The OPC
Foundation is responsible for the development and maintenance of this standard.

Initially, the OPC standard was restricted to the Windows operating system. As such, the
acronym OPC was borne from OLE (object linking and embedding) for Process Control. These
specifications, which are now known as OPC Classic, have enjoyed widespread adoption across
multiple industries, including manufacturing, building automation, oil and gas, renewable energy
and utilities, among others.

OPC UA is a platform independent service-oriented architecture that integrates all the
functionality of the individual OPC Classic specifications into one extensible framework. This
multi-layered approach accomplishes the original design specification goals of:

• Platform independence: from an embedded microcontroller to cloud-based infrastructure

• Secure: encryption, authentication, authorization and auditing

• Extensible: ability to add new features including transports without affecting existing
applications

• Comprehensive information modelling capabilities: for defining any model from simple
to complex

IO-Link Community

Goal of the IO-Link Community is to develop and market IO-Link as a technology. The IO-Link
Community works as a Committee C IO-Link (C) organized within the Profibus
Nutzerorganisation e.V. (PNO). The IO-Link interface is in principle to be seen as being
independent of the fieldbus systems of the PNO (PROFIBUS and PROFINET).

IO-Link is the first standardized IO technology worldwide (IEC 61131-9) for the communication
with sensors and also actuators. The powerful point-to-point communication is based on the
long established 3-wire sensor and actuator connection without additional requirements
regarding the cable material. So, IO-Link is no fieldbus but the further development of the
existing, tried-and-tested connection technology for sensors and actuators.

Each IO-Link device has an IODD (IO Device Description). This is a device description file which
contains information about the manufacturer, article number, functionality etc. This information
can be easily read and processed by the user. Each device can be unambiguously identified
via the IODD as well as via an internal device ID.

2 Normative References

The following referenced documents are indispensable for the application of this specification.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

OPC UA Part 1: OPC Unified Architecture – Part 1: Overview

OPC UA Part 2: OPC Unified Architecture – Part 2: Security Model

Release 1.0 2 OPC UA for IO-Link

OPC UA Part 3: OPC Unified Architecture – Part 3: Address Space Model

OPC UA Part 4: OPC Unified Architecture – Part 4: Services

OPC UA Part 5: OPC Unified Architecture – Part 5: Information Model

OPC UA Part 6: OPC Unified Architecture – Part 6: Mappings

OPC UA Part 7: OPC Unified Architecture – Part 7: Profiles

OPC UA Part 8: OPC Unified Architecture – Part 8: Data Access

OPC UA Part 9: OPC Unified Architecture – Part 9: Alarms & Conditions

OPC UA Part 100: OPC Unified Architecture – OPC UA for Devices

IO-Link Specification: IO-Link Interface and System Specification, Version 1.1.2, July 2013

IO-Link Addendum: IO-Link Addendum 2017 related to IO-Link Interface and System
Specification V1.1.2, Version 2.0, December 2017

IODD Specification:

• IO Device Description, Version 1.1, August 2011

• IO Device Description, Version 1.0.1, March 2010

IO-Link Common Profile: IO-Link Common Profile Specification Version 1.0 July 2017

3 Terms, Definitions, and Conventions

3.1 Overview

It is assumed that basic concepts of OPC UA information modelling and IO-Link are understood
in this specification. This specification will use these concepts to describe the OPC UA for IO -
Link Information Model. For the purposes of this document, the terms and definitions given in
OPC UA Part 1, OPC UA Part 3, OPC UA Part 4, OPC UA Part 5, OPC UA Part 7, OPC UA Part
100, IO-Link Specification, and IODD Specification as well as the following apply.

3.2 OPC UA for IO-Link Information Model Terms

3.2.1
IO-Link Device

Device as defined in IO-Link Specification

3.2.2
IO-Link Master

Master as defined in IO-Link Specification

3.3 Abbreviations and Symbols

ERP Enterprise Resource Planning
HMI Human-Machine Interface
HTTP Hypertext Transfer Protocol
IODD IO-Link Device Description

OPC UA for IO-Link 3 Release 1.0

IP Internet Protocol
ISDU Indexed Service Data Unit
MES Manufacturing Execution System
PMS Production Management System
SCADA Supervisory Control And Data Acquisition
TCP Transmission Control Protocol
UA Unified Architecture
XML Extensible Markup Language

3.4 Conventions used in this Document

3.4.1 Conventions for Terms

Terms in this document are written in CamelCase. Only the first occurrence of a term is written
in italic.

3.4.2 Conventions for Node Descriptions

Node definitions are specified using tables (see Table 2).

Attributes are defined by providing the Attribute name and a value, or a description of the value.

References are defined by providing the ReferenceType name, the BrowseName of the
TargetNode and its NodeClass.

 If the TargetNode is a component of the Node being defined in the table the Attributes
of the composed Node are defined in the same row of the table.

 The DataType is only specified for Variables; “[<number>]” indicates a single -
dimensional array, for multi-dimensional arrays the expression is repeated for each
dimension (e.g. [2][3] for a two-dimensional array). For all arrays the ArrayDimensions
is set as identified by <number> values. If no <number> is set, the corresponding
dimension is set to 0, indicating an unknown size. If no number is provided at all the
ArrayDimensions can be omitted. If no brackets are provided, it identifies a scalar
DataType and the ValueRank is set to the corresponding value (see OPC UA Part 3). In
addition, ArrayDimensions is set to null or is omitted. If it can be Any or
ScalarOrOneDimension, the value is put into “{<value>}”, so either “{Any}” or
“{ScalarOrOneDimension}” and the ValueRank is set to the corresponding value (see
OPC UA Part 3) and the ArrayDimensions is set to null or is omitted. Examples are given
in Table 1.

Table 1 – Examples of DataTypes

Notation Data-
Type

Value-
Rank

Array-
Dimensions

Description

Int32 Int32 -1 omitted or null A scalar Int32.

Int32[] Int32 1 omitted or {0} Single-dimensional array of Int32 with an
unknown size.

Int32[][] Int32 2 omitted or {0,0} Two-dimensional array of Int32 with unknown
sizes for both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of 3 for
the first dimension and an unknown size for the
second dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of 5 for
the first dimension and a size of 3 for the second
dimension.

Int32{Any} Int32 -2 omitted or null An Int32 where it is unknown if it is scalar or array
with any number of dimensions.

Int32{ScalarOrOne
Dimension}

Int32 -3 omitted or null An Int32 where it is either a single-dimensional
array or a scalar.

 The TypeDefinition is specified for Objects and Variables.

Release 1.0 4 OPC UA for IO-Link

 The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified
Node points with a HasTypeDefinition Reference to the corresponding Node.

 The ModellingRule of the referenced component is provided by specifying the symbolic
name of the rule in the ModellingRule column. In the AddressSpace, the Node shall use
a HasModellingRule Reference to point to the corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the
DataType shall be used.

Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used
ReferenceType, their NodeClass and their BrowseName are specified. A reference to another
part of this document points to their definition.

Table 2 illustrates the table. If no components are provided, the DataType, TypeDefinition and
ModellingRule columns may be omitted and only a Comment column is introduced to point to
the Node definition.

Table 2 – Type Definition Table

Attribute Value

Attribute name Attribute value. If it is an optional Attribute that is not set “--“ will be used.

References NodeClass BrowseName DataType TypeDefinition ModellingRule

ReferenceType
name

NodeClass
of the
TargetNode.

BrowseName of the
target Node. If the
Reference is to be
instantiated by the
server, then the
value of the target
Node’s
BrowseName is “--“.

DataType
of the
referenced
Node, only
applicable
for
Variables.

TypeDefinition of the referenced
Node, only applicable for
Variables and Objects.

Referenced
ModellingRule of
the referenced
Object.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex that is containing components by themselves. The
TypeDefinition, NodeClass, DataType and ModellingRule can be derived from the type
definitions, and the symbolic name can be created as defined in Annex A. Therefore, those
containing components are not explicitly specified; they are implicitly specified by the type
definitions.

3.4.3 NodeIds and BrowseNames

3.4.3.1 NodeIds

The NodeIds of all Nodes described in this standard are only symbolic names. Annex A defines
the actual NodeIds.

The symbolic name of each Node defined in this specification is its BrowseName, or, when it is
part of another Node, the BrowseName of the other Node, a “.”, and the BrowseName of itself.
In this case “part of” means that the whole has a HasProperty or HasComponent Reference to
its part. Since all Nodes not being part of another Node have a unique name in this specification,
the symbolic name is unique.

The NamespaceUri for all NodeIds defined in this specification is defined in Annex A. The
NamespaceIndex for this NamespaceUri is vendor-specific and depends on the position of the
NamespaceUri in the server namespace table.

Note that this specification not only defines concrete Nodes, but also requires that some Nodes
shall be generated, for example one for each Session running on the Server. The NodeIds of
those Nodes are vendor-specific, including the NamespaceUri. But the NamespaceUri of those
Nodes cannot be the NamespaceUri used for the Nodes defined in this specification, because
they are not defined by this specification but generated by the Server.

OPC UA for IO-Link 5 Release 1.0

3.4.3.2 BrowseNames

The text part of the BrowseNames for all Nodes defined in this specification is specified in the
tables defining the Nodes. The NamespaceUri for all BrowseNames defined in this specification
is defined in Annex A.

If the BrowseName is not defined by this specification, a namespace index prefix like
‘0:EngineeringUnits’ is added to the BrowseName. This is typically necessary if a Property of
another specification is overwritten or used in the OPC UA types defined in this specification.
Table 83 provides a list of namespaces used in this specification.

3.4.4 Common Attributes

3.4.4.1 General

The Attributes of Nodes, their DataTypes and descriptions are defined in OPC UA Part 3.
Attributes not marked as optional are mandatory and shall be provided by a Server. The
following tables define if the Attribute value is defined by this specification or if it is vendor-
specific.

For all Nodes specified in this specification, the Attributes named in Table 3 shall be set as
specified in the table.

Table 3 – Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to
the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated
names for other LocaleIds is vendor-specific.

Description Optionally a vendor-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in 3.4.3.1

WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided, it
shall set all non-vendor-specific Attributes to not writable. For example, the Description
Attribute may be set to writable since a Server may provide a vendor-specific description for
the Node. The NodeId shall not be writable, because it is defined for each Node in this
specification.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the WriteMask
Attribute apply.

RolePermissions Optionally vendor-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is vendor-
specific and depend on the RolePermissions Attribute (if provided) and the current Session.

AccessRestrictions Optionally vendor-specific access restrictions can be provided.

3.4.4.2 Objects

For all Objects specified in this specification, the Attributes named in Table 4 shall be set as
specified in the table. The definitions for the Attributes can be found in OPC UA Part 3.

Table 4 – Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is vendor-specific.

3.4.4.3 Variables

For all Variables specified in this specification, the Attributes named in Table 5 shall be set as
specified in the table. The definitions for the Attributes can be found in OPC UA Part 3.

Release 1.0 6 OPC UA for IO-Link

Table 5 – Common Variable Attributes

Attribute Value

MinimumSamplingInterval Optionally, a vendor-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is vendor-specific, for all other
Variables defined in this specification, the access level shall allow reading; other settings are
vendor-specific.

UserAccessLevel The value for the UserAccessLevel Attribute is vendor-specific. It is assumed that all
Variables can be accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is vendor-specific; otherwise it shall
represent the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is
vendor-specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is vendor-specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0,
meaning that read and write operations on an individual Variable are atomic, and arrays can
be partly written.

3.4.4.4 VariableTypes

For all VariableTypes specified in this specification, the Attributes named in Table 6 shall be
set as specified in the table. The definitions for the Attributes can be found in OPC UA Part 3.

Table 6 – Common VariableType Attributes

Attributes Value

Value Optionally a vendor-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behaviour is vendor-
specific.

If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the VariableType.

3.4.4.5 Methods

For all Methods specified in this specification, the Attributes named in Table 7 shall be set as
specified in the table. The definitions for the Attributes can be found in OPC UA Part 3.

Table 7 – Common Method Attributes

Attributes Value

Executable All Methods defined in this specification shall be executable (Executable Attribute set to “True”),
unless it is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is vendor-specific. It is assumed that all Methods can
be executed by at least one user.

OPC UA for IO-Link 7 Release 1.0

4 General Information on IO-Link and OPC UA

4.1 Introduction to IO-Link

4.1.1 What is IO-Link?

IO-Link is the first standardized IO technology worldwide (IEC 61131-9) for the communication
with sensors and actuators. The powerful point-to-point communication is based on the long
established 3-wire sensor and actuator connection without additional requirements regarding
the cable material. So, IO-Link is no fieldbus but the further development of the existing, tried -
and-tested connection technology for sensors and actuators.

4.1.2 Basics of IO-Link

An IO-Link system consists of an IO-Link Master, IO-Link Devices and the cables that connect
the IO-Link Devices to the IO-Link Master’s ports. The IO-Link Master establishes the
connection between the IO-Link Devices and the automation system and maintains point-to-
point connections to the IO-Link Devices. Figure 1 gives an example of a system architecture
with IO-Link.

Figure 1 – System Architecture with IO-Link (Example)

Figure 1 uses the following colour code: Green for Ethernet and Fieldbus connections, orange
for IO-Link connections and black for non-IO-Link sensor/actuator connections. Note that
IO-Link Masters can be implemented at different levels of the hierarchy and be combined with
different kinds of devices such as fieldbus masters, gateways, etc.

4.1.3 Device Description

Each IO-Link Device has an IODD (IO Device Description). This is a device description file
which contains information about the manufacturer, article number, functionality etc. This
information can be easily read and processed by the user. Each device can be unambiguously
identified via the IODD as well as via an internal device ID.

Release 1.0 8 OPC UA for IO-Link

4.2 Introduction to OPC Unified Architecture

4.2.1 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communication
protocol. While there are numerous communication solutions available, OPC UA has key
advantages:

• A state of art security model (see OPC UA Part 2).

• A fault tolerant communication protocol.

• An information modelling framework that allows application developers to represent their
data in a way that makes sense to them.

OPC UA has a broad scope which delivers for economies of scale for application developers.
This means that a larger number of high quality applications at a reasonable cost are available.
When combined with semantic models such as OPC UA for IO-Link, OPC UA makes it easier
for end users to access data via generic commercial applications.

The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process
information locally and then provide that data in a consistent format to any application
requesting data - ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard
Browser, for examples. For a more complete overview see OPC UA Part 1.

4.2.2 Basics of OPC UA

As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP,
Web Sockets.

As an extensible standard, OPC UA provides a set of Services (see OPC UA Part 4) and a basic
information model framework. This framework provides an easy manner for creating and
exposing vendor defined information in a standard way. More importantly all OPC UA Clients
are expected to be able to discover and use vendor-defined information. This means OPC UA
users can benefit from the economies of scale that come with generic visualization and historian
applications. This specification is an example of an OPC UA Information Model designed to
meet the needs of developers and users.

OPC UA Clients can be any consumer of data from another device on the network to browser
based thin clients and ERP systems. The full scope of OPC UA applications is shown in Figure
2.

OPC UA for IO-Link 9 Release 1.0

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Application

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Figure 2 – The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for
handling lost messages, failover, heartbeat, etc. With its binary encoded data, it offers a high -
performing data exchange solution. Security is built into OPC UA as security requirements
become more and more important especially since environments are connected to the office
network or the internet and attackers are starting to focus on automation systems.

4.2.3 Information Modelling in OPC UA

4.2.3.1 Concepts

OPC UA provides a framework that can be used to represent complex information as Objects
in an AddressSpace which can be accessed with standard services. These Objects consist of
Nodes connected by References. Different classes of Nodes convey different semantics. For
example, a Variable Node represents a value that can be read or written. The Variable Node
has an associated DataType that can define the actual value, such as a string, float, structure
etc. It can also describe the Variable value as a variant. A Method Node represents a function
that can be called. Every Node has a number of Attributes including a unique identifier called a
NodeId and non-localized name called as BrowseName.

Object and Variable Nodes represent instances and they always reference a TypeDefinition
(ObjectType or VariableType) Node which describes their semantics and structure. Figure 3
illustrates the relationship between an instance and its TypeDefinition.

The type Nodes are templates that define all the children that can be present in an instance of
the type. In the example in Figure 3 the SomeType ObjectType defines two Properties:
Property1 and Property2. All instances of SomeType are expected to have the same children
with the same BrowseNames. Within a type the BrowseNames uniquely identify the children.
This means Client applications can be designed to search for children based on the
BrowseNames from the type instead of NodeIds. This eliminates the need for manual
reconfiguration of systems if a Client uses types that multiple Servers implement.

OPC UA also supports the concept of sub-typing. This allows a modeller to take an existing
type and extend it. There are rules regarding sub-typing defined in OPC UA Part 3, but in
general they allow the extension of a given type or the restriction of a DataType. For example,
the modeller may decide that the existing ObjectType in some cases needs an additional
Variable. The modeller can create a subtype of the ObjectType and add the Variable. A Client
that is expecting the parent type can treat the new type as if it was of the parent type. Regarding

Release 1.0 10 OPC UA for IO-Link

DataTypes, subtypes can only restrict. If a Variable is defined to have a numeric value, a sub
type could restrict it to a float.

Instance1

Property1
 One

Property2
 Two

Property1
[String]

Property2
[String]

Property3
 Three

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

BaseObjectType

SomeType

Figure 3 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected in ways that describe their relationships. All
References have a ReferenceType that specifies the semantics of the relationship. References
can be hierarchical or non-hierarchical. Hierarchical references are used to create the structure
of Objects and Variables. Non-hierarchical are used to create arbitrary associations.
Applications can define their own ReferenceType by creating subtypes of an existing
ReferenceType. Subtypes inherit the semantics of the parent but may add additional
restrictions.

4.2.3.2 Graphical Notation

Figure 3 uses a notation that was developed for the OPC UA specification. The notation is
summarized in Figure 4. UML representations can also be used; however, the OPC UA notation
is less ambiguous because there is a direct mapping from the elements in the figures to Nodes
in the AddressSpace of an OPC UA Server.

OPC UA for IO-Link 11 Release 1.0

Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

HasEventSource
HasComponent

HasProperty

HasTypeDefinition

HasSubtype

Figure 4 – The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in OPC UA
Part 3 and the base structure is described in OPC UA Part 5.

4.2.4 OPC UA Profiles

OPC UA specification defines a very wide range of functionality in its basic information model.
It is not expected that all Clients or Servers support all functionality in the OPC UA
specifications. OPC UA includes the concept of Profiles, which segment the functionality into
testable certifiable units. This allows the definition of functional subsets (that are expected to
be implemented) within a companion specification. The Profiles do not restrict functionality, but
generate requirements for a minimum set of functionalities (see OPC UA Part 7).

4.2.5 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent
AddressSpace. Namespaces are used to make this possible by eliminating naming and id
conflicts between information from different sources. Namespaces in OPC UA have a glob ally
unique string called a NamespaceUri and a locally unique integer called a NamespaceIndex.
The NamespaceIndex is only unique within the context of a Session between an OPC UA Client
and an OPC UA Server. The Services defined for OPC UA use the NamespaceIndex to specify
the Namespace for qualified values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and
QualifiedNames. NodeIds are globally unique identifiers for Nodes. This means the same Node
with the same NodeId can appear in many Servers. This, in turn, means Clients can have built
in knowledge of some Nodes. OPC UA Information Models generally define globally unique
NodeIds for the TypeDefinitions defined by the Information Model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the
BrowseNames of Nodes and allow the same names to be used by different information models
without conflict. TypeDefinitions are not allowed to have children with duplicate BrowseNames;
however, instances do not have that restriction.

4.2.6 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an
Information Model by defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes

Release 1.0 12 OPC UA for IO-Link

that represent the concepts used in the vertical market, and potentially also well-defined Objects
as entry points into the AddressSpace.

5 Combining OPC UA and IO-Link

5.1 System Architecture

This specification defines an Information Model for IO-Link Masters and Devices. An example
of a system architecture, providing different deploy options for OPC UA applications, is shown
in Figure 5. The OPC UA Server can directly be deployed on an IO-Link Master or a PLC
connected to the IO-Link Master or another platform like a PC. The OPC UA Client can directly
be connected to the OPC UA Server running on the IO-Link Master, it can be connected to the
PLC running the OPC UA Server, or the PLC can forward the traffic from an OPC UA Client on
top of the PLC to the OPC UA Server running on the IO-Link Master beneath the PLC. More
deploy options are possible and not limited by this specification.

Figure 5 – System Architecture of IO-Link and OPC UA (Example)

5.2 Use Cases

The use cases that shall be fulfilled by this specification were defined by the IO-Link / OPC UA
Integration Requirements Version 1.0.0 document. This section summarizes the use cases in
scope.

5.2.1 UC.001: Configure an IO-Link Master

Preparing the IO-Link Master for the respective application by adjusting its parameters. This
use case is of relevance, if the IO-Link Master is not connected to a fieldbus and a PLC.

5.2.2 UC.002: Find IO-Link Masters

The user would like to know which IO-Link Masters are used in the plant/machine. He would
like to find IO-Link Masters of all types and vendors in the same way using his SW-Tool. No
vendor-specific implementation shall be needed.

OPC UA for IO-Link 13 Release 1.0

5.2.3 UC.003: Find IO-Link Devices

To be able to parameterize the connected IO-Link Devices it must be possible to request the
IO-Link Master to give the information about connected devices to each of its ports.

5.2.4 UC.004: Initial commissioning of IO-Link Device

The user wants to parameterize the IO-Link Device for its application.

5.2.5 UC.005: Configure device metadata

Add metadata to identify the role and position of a device in the machine or proces s. If the IO-
Link Device does not support the IO-Link Common Profile with Application Specific Tag,
Function Tag and Location Tag, these parameters shall be virtually provided in the OPC UA
Server.

5.2.6 UC.006: Configure IO-Link subscriptions

Setup data subscriptions to master or device variables and events to be able to:

• Calculate operation KPIs (e.g. OEE)

• Generate SPC (statistical process control) charts

• Measure process data for process optimization

5.2.7 UC.007: Disconnection of IO-Link Device

The user (OPC UA Client) gets informed that a certain subscription is not available anymore,
i.e. due to a disconnected IO-Link Device, to identify reasons for gaps in logs.

5.2.8 UC.008: Read product identification

The user of an OPC UA Client can uniquely identify all connected IO-Link Masters by their serial
number information and devices by vendor and device ID to recognize the status of the devices
and facilitate the exchange. For each IO-Link Device and the IO-Link Master, the following data
are provided for reading only:

• IO-Link DeviceType Version (mandatory)

• IO-Link Protocol Version (mandatory)

• Vendor Name (mandatory)

• Product Name (mandatory)

• Product ID (mandatory)

• Serial Number (mandatory)

• Hardware Revision (optional)

• Software Revision (optional)

• Vendor Text (optional)

• Product Text (optional)

• Application Specific Tag (mandatory – see UC.005)

• Function Tag (optional)

• Location Tag (optional)

• Implicit topology information (address of IO-Link Master and port number, where the IO-
Link Device is connected to)

Release 1.0 14 OPC UA for IO-Link

5.2.9 UC.009: Read diagnostics data

User shall have access to logged diagnosis events. General and specific access to diagnostic
data after authorization. OPC UA Client may collect event information sent to him in a logging
buffer. If the IO-Link Master provides event logging, this information should be accessible via
OPC UA.

5.2.10 UC.010: Read operating and failure statistics

The maintenance staff would like to use the productiv ity of used devices to determine the
characteristics of the device during the period of use and the number of failures to obtain a
statement about plant availability.

The maintenance staffs receive data on the operating time and the failure times of the connected
devices.

The data are generated in the IO-Link Master and updated on the OPC UA Server.

The IO-Link Master records for each connected IO-Link Device

• the duration the device is connected

• the duration the device has communicated without error

• the duration the device was not communicable

• how often the device has been plugged in

• how often the device has been changed

• how often the device was not accessible

The master cyclically updates the data on the OPC UA Server and stores it persistently.

• The data has a resolution in seconds.

• The duration refers to the time of the last reset (usually during commissioning) .

5.2.11 UC.011: Reset operating and failure statistics

The maintenance staff can reset the operating and failure statistics.

5.2.12 UC.012: Optimize machine settings

A machine in production needs to be optimized. This can be done by changing parameters of
IO-Link Devices (e.g. limit values).

5.2.13 UC.013: Plant and machine status supervision

The operator staff would like to get immediately informed by the machine regarding process
productivity and plant availability. In case of degradation, the possible location or source of
problem shall also be reported.

Every plant subsystem with OPC UA Server connectivity sends an event if a critical condition
has been detected or a configured threshold has been reached. The subsystem can also contain
IO-Link Master and Devices, where IO-Link Events are translated into OPC UA events. The
reported events from these subsystems shall consist of:

• the origin identity of the event

• the unambiguous identity of the event

• the absolute time of occurrence according to the subsystems time base

• if the occurrence is temporal, the duration of the erroneous condition

OPC UA for IO-Link 15 Release 1.0

• if possible, the identity of the processed item

On the application level, the following is derived on this raw data :

• an availability signal in traffic light encoding

• notification towards the operator staff

5.2.14 UC.014: Faulty device replacement

The user would like to replace an IO-Link Master or IO-Link Device with transfer of the previous
configuration to the new device.

5.2.15 UC.015: Firmware update

Update device firmware individually and in groups of identical devices for IO -Link Masters and
IO-Link Devices.

Note: Due to ongoing work in the OPC UA for Devices working group to standardize the firmware
update, this version of the specification intentionally does not address the firmware update.

5.2.16 UC.016: Asset Management

Manage all the assets in an automation network.

Maintenance staff is called to adjust one or more settings.

5.2.17 UC.017: Cloud-connectivity at Edge Gateway

For Industry 4.0 application, an OPC UA Server will be the virtual interface between the cloud
and the sensors in the field.

Therefore, the OPC UA Server has to apply the following functions:

• Find all IO-Link Masters

• Find IO-Link Devices

• Download IODD of connected devices

• Build up information model

• Record all replacement of connected devices and update information model

• Capture the status of connected devices

• Read cyclic IO data

• Read ISDU parameter sets

The Edge Gateway must find IO-Link Masters of all types and vendors in the same way. No
vendor-specific implementation shall be necessary.

6 IO-Link Information Model Overview

6.1 Modelling Concepts

6.1.1 IO-Link Master

The configuration of the IO-Link Master is done by representing the IO-Link Master as Object
having several Variables and Methods to view and to change the configuration. The ports of the
IO-Link Master are modelled as individual Objects.

Release 1.0 16 OPC UA for IO-Link

6.1.2 IO-Link Port

The configuration of an IO-Link Port is done by representing the IO-Link Port as Object having
several Variables and Methods to view and to change the configuration. If the IO-Link Port has
a connected or configured IO-Link Device, the device is referenced from the IO-Link Port.

6.1.3 IO-Link Device

The IO-Link Device is represented as Object having several Variables and Methods to view and
to change the configuration. There is a generic ObjectType representing the common
functionality of an IO-Link Device, and subtypes of it for the IODD extensions describing the
type of a specific IO-Link Device in more detail and providing more intuitive configuration
options.

6.1.4 IO-Link Events

Events can occur for different reasons. An IO-Link Master can generate vendor-specific Events;
an IO-Link Port generates Events when the communication to the device fails, the device gets
exchanged, etc.

The IO-Link Device itself provides event information. The IO-Link Master shall observe the event
flag provided with each message. In case i t is set, the IO-Link Master shall receive the event
information via the acyclic communication mechanisms of IO-Link and forward it to the OPC UA
Server and the server provides the received events via the OPC UA interface .

Events provided as IO-Link “Error” or “Warning” are mapped to OPC UA Alarms (see OPC UA
Part 9), events provided as IO-Link “Notification” as OPC UA Events.

Additional to the observation of the event flag there is the possibility to get information about
the status of a stateful IO-Link Event (that is mapped to OPC UA Alarms) by using the
DiagEntries of PortStatusList as defined in the SMI (see IO-Link Addendum) and the
DetailedDeviceStatus (ISDU Index 0x0025).

6.1.5 Block operations: Up- and Download

An IO-Link Device can be configured by writing ISDU parameters. When a parameter of an IO -
Link Device is written, the content is checked for consistency. This is useful, because it can
happen that certain value combinations of some parameters are not valid configuration options.

When a single parameter is written, its value is checked against the other parameters that were
configured before (or had this value by default). If the check fails, an error is returned. This
behaviour causes problems if you want to change set of interdependent parameters.

Because of this, IO-Link provides block operations. If a device is set into the download state
(via a system command) the device allows to write many parameters to the device without
checking for consistency. When the block parameterization is finished (by sending another
system command) the consistency of all changed parameters is checked as a whole. If all
parameters are consistent, all changes are accepted, else all changes are rejected.

If the block operations are used to read several parameters, the device does not allow
parameters to be changed during this time.

The needed IO-Link system commands (see IO-Link Specification) are mapped to OPC UA
Methods.

To avoid concurrent access from different OPC UA Clients while the block operation is used by
one OPC UA Client, the OPC UA Client should lock the IO-Link Device using the Lock Object
defined in OPC UA Part 100.

OPC UA for IO-Link 17 Release 1.0

6.1.6 Managing IODDs

IODDs are managed as ObjectTypes in the server. A specific, well -defined Object called
IODDManagement having well-defined Methods is used to load new IODDs to the Server (and
thereby creating new ObjectTypes) or to delete IODDs from the Server.

6.1.7 Relating IO-Link Devices to IO-Link Ports

Depending on the configuration of an IO-Link Port and whether a physical IO-Link Device is
connected to the IO-Link Port, either an Object representing the IO-Link Device is connected to
the IO-Link Port or not. The following state machine describes, whether such an Object is there,
and what ObjectType is used.

The top-level state machine defines the states “Port not configured as IO -Link” and “Select
Device Instance Type”. In the first state the IO -Link Port is configured that no IO-Link Device is
used (PortMode is either DEACTIVATED, DI_C/Q or DO_C/Q) and the optional Device Object
is not available. In the second state the IO-Link-Port is configured to be an IO-Link Device
(PortMode is either IOL_AUTOSTART or IOL_MANUAL) and the substates indicate whether a
Device Object exists as well as the used ObjectType. Changes of the PortMode trigger
transitions between the states. For the second state, additional transitions are defined that
trigger the re-entrance of the state and thus the re-evaluation whether a Device Object exists
as well as the used ObjectType. Those transitions include plugging in or off devices, changing
the UseIODD Property or changes of IO-Link Port configuration Parameters.

Release 1.0 18 OPC UA for IO-Link

Select Device Instance Type

Port not configured

as IO-Link

Select Device

Instance Type

Port configured as IO-Link:

PortMode == IOL_MANUAL || IOL_AUTOSTART

Port not configured as IO-Link:

PortMode == DEACTIVATED || DI_C/Q || DO_C/Q

Device connection change

(Plug in device, plug off device)

UseIODD value change

Port configuration change

(switch between PortMode

IOL_MANUAL or IOL_AUTOSTART

or change of Validation details)

PortMode == IOL_AUTOSTART

Device not instantiated

Entry/ Delete eventually

available device instance

Status == NO_DEVICE

|| NOT_AVAILABLE

PortMode == IOL_MANUAL

Status ==

 PORT_FAULT || PREOPERATE || OPERATE

IODD Device

Entry/ Update device

instance (delete and

create or modify)

IO-Link Device

Entry/ Update device

instance (delete and

create or modify)

IODD representation available UseIODD == true

UseIODD == false

Delete IODD

(with –force)

IODD representation not available

Add IODD

Figure 6 – State machine describing if an Object is connected to an IO-Link Port

The sub-state-machine of the “Select Device Instance Type” describes three states indicating,
whether the Device Object exists and what ObjectType is used.

• “Device not instantiated” indicates that the optional Device Object does not exist.

• “IODD Device” indicates that the Device Object exists and the IODD is used and
therefore the concrete ObjectType related to the IODD is used.

OPC UA for IO-Link 19 Release 1.0

• “IO-Link Device” indicates that the Device Object exists and the IOLinkDeviceType is
used.

The sub-state-machine defines different choices to find the correct state.

When the PortMode is IOL_AUTOSTART but no device is connected, the “Device not
instantiated” state is used.

When the PortMode is IOL_AUTOSTART and a device is connected, or the PortMode is
IOL_MANUAL it is further decided if the “IODD Device” or the “IO -Link Device” state is used.

When the IODD representing the IO-Link Device is available in the server and the UseIODD
Parameter is “True”, the “IODD Device” state is used, otherwise the “IO-Link Device” state is
used.

Note that if an IO-Link Device is connected, the information of the connected IO -Link Device is
used to identify the IODD, even if the IO-Link Port has a different device configured (Status =
INCORRECT_DEVICE). Only when the PortMode is IOL_MANUAL and no device is connected
(Status == NO_DEVICE || NOT_AVAILABLE) the configured device information is used to
identify the IODD.

When the IO-Link Port is in the “IODD Device” state and the IODD is deleted (e.g. by the Method
RemoveIODD using the force option) it changes to the “IO -Link Device” state.

When the IO-Link Port is in the “IO-Link Device” state and the IODD representing the IO -Link
Device is added to the server (e.g. by the Method TransferIODD) and the UseIODD Param eter
is “True” it changes to the “IODD Device” state.

Note that there can be limitations on what Variables can be accessed and what Methods can
be executed from the Device Object (states “IO-Link Device” or “IODD Device”).

• When the PortMode is IOL_MANUAL and no device is connected (Status ==
NO_DEVICE || NOT_AVAILABLE) the Device Object is available so OPC UA Clients can
already be configured to use the configured IO-Link Device, but since no physical IO-
Link Device is connected, all access to Variables or Methods requiring device access
will fail (bad code). Providing the structure of the configured IO-Link Device is especially
helpful if an IODD is used, since the structure defined by the IODD is already available
to the OPC UA Client (specific Parameters etc.).

• When the PortMode is IOL_MANUAL but the incorrect IO-Link Device is connected
(Status == INCORRECT_DEVICE) accessing the Variables representing the process
data (e.g. ProcessDataInput, ProcessDataOutput) will fail (bad code).

6.2 Model Overview

In Figure 7 an overview of the IO-Link Information Model is given. The IOLinkDeviceType
represents IO-Link Devices. In case no IODD is available, this type shall directly be used to
represent an IO-Link Device. If an IODD is available, a subtype is used representing the
concrete IODD and providing the additional parameters, system commands, etc. defined in the
IODD (see section 7.3). The IOLinkDeviceType inherits from TopologyElementType defined in
OPC UA Part 100 and thus provides basic grouping mechanisms (ParameterSet for parameters
and MethodSet for Methods). It also uses basic Properties of a device like SerialNumber defined
in OPC UA Part 100. Section 7.1 defines details on those Properties and additional Properties
like VendorId, Parameters like ApplicationSpecificTag and Methods like ReadISDU. The IO-
Link Master is represented by an Object of IOLinkMasterType (see section 7.5). This
ObjectType also inherits from the TopologyElementType and defines basic Properties,
Parameters and Methods. For each port the IO-Link Master contains an Object of type
IOLinkPortType (see section 7.6). The IOLinkPortType inherits from the TopologyElementType

Release 1.0 20 OPC UA for IO-Link

and thereby uses the same grouping mechanisms for Parameters and Variables. It defines
Properties, Parameters and Methods for the IO-Link Port. If the port has an IO-Link Device
connected, the IO-Link Device (Object of type IOLinkDeviceType) is connected to the port.

BaseObjectType

TopologyElementType

IOLinkDeviceType

IODD specific

Type A

IODD specific

Type B

IOLinkMasterType

MethodSet

ParameterSet

MethodSet

ParameterSet ApplicationSpecificTag

VendorID

ReadISDU

...

...
...

...

OPC UA Part 5

OPC UA Part 100

IOLinkPortType

Port<n>

IOLinkDeviceType

Device

IOLinkIODDDeviceType

Figure 7 – IO-Link Information Model overview (Structure)

Instances of IOLinkDeviceType generate Events of type IOLinkDeviceEventType (see section
9.3) and IOLinkDeviceAlarmType (see section 9.8). An OPC UA Server might provide instances
of the IOLinkDeviceAlarmType or its subtypes as Objects under the Alarms Object (see Figure
8).

Instances of IOLinkMasterType generate Events of type IOLinkMasterEventType (see section
9.6) and IOLinkMasterAlarmType (see section 9.11). Ports generate events of type
IOLinkPortEventType (see section 9.5) and IOLinkPortAlarmType (see section 9.10). Both can
provide instances of the IOLinkMasterAlarmType respectively IOLinkPortAlarmType under the
Alarms Object (see Figure 8).

In the ObjectType hierarchy the mentioned events are grouped under the IOLinkEventType and
the alarms under the IOLinkAlarmType (see Figure 8).

OPC UA for IO-Link 21 Release 1.0

BaseEventType

IOLinkDeviceType

IOLinkEventType

IOLinkMasterType

Alarms

OPC UA Part 5

OPC UA Part 9

Severity...

GeneratesEvent

IOLinkDeviceEventType

IOLinkMasterEventType

IOLinkPortEventType

GeneratesEvent

IOLinkPortType
GeneratesEvent

OffNormalAlarmType

ActiveState...

Alarms

Alarms

IOLinkAlarmType

GeneratesEvent

IOLinkDeviceAlarmType

IOLinkMasterAlarmType

IOLinkPortAlarmType

GeneratesEvent GeneratesEvent

IODD-specific

DeviceType

Alarms

IOLinkDeviceAlarmType

Condition1

...

IOLinkMasterAlarmType

Condition2

...

IOLinkPortAlarmType

Condition3

...

ConditionType

...

IOLinkIODDDeviceType

Figure 8 – IO-Link Information Model overview (Events)

Figure 9 shows the entry points into the AddressSpace. The IOLinkMasterSet provides direct
access to the Objects representing IO-Link Masters and indirectly to the Objects representing
the IO-Link Devices connected to the Master. The IODDManagement Object contains the Object
named IODDs pointing to all ObjectTypes representing an IODD.

Note: In order to figure out how many IO-Link Masters an OPC UA Server currently manages,
an OPC UA Client can browse the IOLinkMasterSet and count all Objects of IOLinkMasterType
or a subtype of it.

Release 1.0 22 OPC UA for IO-Link

BaseObjectType

TopologyElementType

IOLinkDeviceType

IODD specific

Type A

IODD specific

Type B
IOLinkMasterType

FolderType

Root

OPC UA Part 5

OPC UA Part 100

FolderType

Objects

FolderType

IODDManagement

FolderType

ObjectTypes

FolderType

IOLinkMasterSet

Organizes

OrganizesOrganizes

Organizes

Organizes

FolderType

IODDs
Organizes

Organizes

IOLinkMasterType

SampleMaster

IODD specific Type A

SampleDevice1

IOLinkPortType

Port1

IOLinkIODDDeviceType

Organizes

FolderType

Types

Organizes

Figure 9 – AddressSpace entry points

6.3 Mapping IODD information to OPC UA ObjectTypes

This section gives a rough overview on how IODD information is mapped to an OPC UA
ObjectType. The formal definition is given in section 7.3.

An IODD consists of an IODevice containing meta data like DocumentInfo and ProfileHeader
describing an IO-Link Device. In addition, it contains information about data types
(DatatypeCollection), variables accessed acyclic (VariableCollection), process data
(ProcessDataCollection), errors (ErrorTypeCollection), events (EventCollection) and menus to
group information in user interfaces (UserInterface).

The user interface information consists of entry points for three different user roles (Observer,
Maintenance, and Specialist), each one containing an identification menu and optionally
parameter, observation, and diagnostics menus. Those menus can reference other menus or
variables. Optionally, the user interface information also provides information how to display
the process data directly (ProcessDataRefCollection).

The three entry points for the user roles are mapped to OPC UA FunctionalGroups. Each menu
that is referenced directly or indirectly as part of such an entry point is also mapped as
FunctionalGroup, referenced from its parent FunctionalGroup.

In Figure 10, an example of such a mapping is given. On the left hand, parts of an IODD are
shown. On the right, the representation as ObjectType in OPC UA is shown. The IODevice is
mapped to an ObjectType. The UserInterface information is mapped mainly to Objects of
FunctionalGroupType. The Observer Object is directly connected to the ObjectType, its
submenu Diagnostics is referenced by the Observer Object. The Diagnostics menu contains
two conditional menus in the IODD, which are both mapped as optional Objects under the
Diagnostics Object. The M_OR_Diagnosis_1132 menu references two Variables. This is
mapped by referencing the corresponding variables of the ParameterSet. Some details of the
mapping like handling conditions or additional information for Variables like EngineeringUnits
are not shown in the figure and defined in section 7.3.

OPC UA for IO-Link 23 Release 1.0

<?xml version="1.0" encoding="utf-8"?>
<IODevice

 <ProfileBody>

 <DeviceFunction>
 <UserInterface>
 <MenuCollection>

 <Menu id="M_OR_Diagnosis_1132">
 <Name textId="TI_M_Diagnosis_Name" />
 <VariableRef variableId="V_DeviceStatus"
 accessRightRestriction="ro" />
 ...
 <VariableRef variableId="V_HIPS"
 displayFormat="Dec.2"
 gradient="0.1" offset="0"
 unitCode="1132" accessRightRestriction="ro" />
 </Menu>
 <Menu id="M_OR_Diagnosis">
 <Name textId="TI_M_Diagnosis_Name" />
 <MenuRef menuId="M_OR_Diagnosis_1132">
 <Condition variableId="V_uni" value="0" />
 </MenuRef>
 <MenuRef menuId="M_OR_Diagnosis_1137">
 <Condition variableId="V_uni" value="1" />
 </MenuRef>

 </Menu>
 </MenuCollection>
 <ObserverRoleMenuSet>

 <DiagnosticsMenu menuId= M_OR_Diagnostics
 </ObserverRoleMenuSet>

 </UserInterface>
 </DeviceFunction>
 </ProfileBody>

</IODevice>

IOLinkDeviceType

SampleDevice

ParameterSet

FunctionalGroupType

Observer

FunctionalGroupType

Maintenance

FunctionalGroupType

Specialist

FunctionalGroupType

M_OR_Diagnosis_1132

FunctionalGroupType

M_OR_Diagnosis_1137

V_DeviceStatus

Organizes

V_HIPS

Organizes

Organizes

Organizes

Organizes

Organizes

Organizes

FunctionalGroupType

Diagnostics
Organizes

Figure 10 – Example of Simplified Mapping of IODD Menus to OPC UA Functional
Groups

7 OPC UA ObjectTypes

7.1 IOLinkDeviceType ObjectType Definition

7.1.1 Example

In Figure 11 an example of an instance of the IOLinkDeviceType is shown. This example is
using only the mandatory InstanceDeclarations, and excluding several mandatory Methods, in
order to give an overview on the ObjectType. Several Properties are directly connected to the
Object, whereas the Parameters are connected via the ParameterSet, Methods via the
MethodSet and both organized via different FunctionalGroups (Identification and General).

Release 1.0 24 OPC UA for IO-Link

ExampleIOLinkDevice

MinCycleTimeIdentification

VendorID

DeviceID

ApplicationSpecificTag

FunctionTag

LocationTag

non-grouped Properties

RevisionID

Manufacturer

Model

General

ProcessDataOutput

ProcessDataInput

ReadISDU

WriteISDU

SystemCommand

ParameterSet

MethodSet

. . .

StoredInDevice

StoredInDevice

StoredInDevice

Figure 11 – Example instance of IOLinkDeviceType (no optional InstanceDeclarations
shown and some mandatory Methods left out)

OPC UA for IO-Link 25 Release 1.0

7.1.2 Overview

The IOLinkDeviceType provides the generic information of an IO-Link Device and is formally
defined in Table 8.

Table 8 – IOLinkDeviceType Definition

Attribute Value

BrowseName IOLinkDeviceType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of TopologyElementType defined in OPC UA Part 100.

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

HasComponent Object 2:MethodSet BaseObjectType Mandatory

HasComponent Object 2:Identification FunctionalGroupType Mandatory

HasComponent Object General FunctionalGroupType Mandatory

HasProperty Variable 2:SerialNumber String PropertyType Optional

HasProperty Variable 2:Manufacturer LocalizedText PropertyType Mandatory

HasProperty Variable 2:Model LocalizedText PropertyType Mandatory

HasProperty Variable 2:HardwareRevision String PropertyType Optional

HasProperty Variable 2:SoftwareRevision String PropertyType Optional

HasComponent Variable 2:DeviceHealth DeviceHealthEnu
m

BaseDataVariableType Optional

HasProperty Variable MinCycleTime Duration PropertyType Mandatory

HasProperty Variable RevisionID String PropertyType Mandatory

HasProperty Variable VendorID UInt16 PropertyType Mandatory

HasProperty Variable DeviceID UInt32 PropertyType Mandatory

HasProperty Variable DeviceAccessLocks UInt16 PropertyType Optional

HasProperty Variable ProfileCharacteristic UInt16[] PropertyType Optional

HasProperty Variable VendorText String PropertyType Optional

HasProperty Variable ProductID String PropertyType Optional

HasProperty Variable ProductText String PropertyType Optional

HasComponent Object Alarms FolderType Optional

GeneratesEvent ObjectType IOLinkDeviceEventType Defined in 9.3.

GeneratesEvent ObjectType IOLinkDeviceAlarmType Defined in 9.8

The IOLinkDeviceType ObjectType is a concrete type and can be used directly, if the server
does not have an IODD describing the device. If the server has such an IODD, a subtype shall
be created representing the concrete IODD (see section 7.3 for details).

The ObjectType inherits the following InstanceDeclarations directly or indirectly from the
TopologyElementType defined in OPC UA Part 100.

• The optional Object ParameterSet is used to reference all Parameters and shall be
provided. Therefore, the ObjectType overrides the Object and changes the
ModellingRule to Mandatory.

• The optional Object MethodSet is used to reference all Methods and shall be provided.
Therefore, the ObjectType overrides the Object and changes the ModellingRule to
Mandatory.

• The optional Object Identification shall be provided and shall reference the Parameters
defined in Table 9. Those Parameters together uniquely identify the device (see OPC
UA Part 100 for details). Therefore, the ObjectType overrides the Object and changes
the ModellingRule to Mandatory.

Release 1.0 26 OPC UA for IO-Link

Table 9 – References of Identification Object

References BrowseName Comment

Organizes DeviceID Variable defined in Table 8.

Organizes VendorID Variable defined in Table 8.

Organizes 2:SerialNumber Variable defined in Table 8.

Organizes ApplicationSpecificTag Variable defined in Table 12.

Organizes FunctionTag Variable defined in Table 12.

Organizes LocationTag Variable defined in Table 12.

• The Object <GroupIdentifier> has the ModellingRule OptionalPlaceholder and is
intended to group the Parameters. It is already used in the ObjectType to define the
General Object.

• The optional Object Lock can be supported by a server to provide locking capabilities
(see OPC UA Part 100 for details). This is intended to prevent different clients and users
to configure an IO-Link Device at the same time. The DeviceAccessLocks is used to
disable the configuration of an IO-Link Device in general while it is set.

The ObjectType uses some InstanceDeclarations the same way as the DeviceType defined
in OPC UA Part 100.

• The Variable SerialNumber of DataType String shall be mapped to ISDU Index 0x0015
(Serial Number). If the device does not support this ISDU Index, the Variable shall not
be provided.

• The Variable Manufacturer of DataType LocalizedText shall be mapped to ISDU Index
0x0010 (Vendor Name). As the name is intended to be locale-agnostic in IO-Link, the
server may provide it with any LocaleId, the string shall be mapped to the text part of
the LocalizedText. If the device does not support this ISDU Index, the VendorID (0x07
and 0x08 of Direct Parameter Page 1) shall be used, and either provided as integer
representation in the text-part or by translating it internally to the Vendor Name managed
by the IO-Link Community.

• The Variable Model of DataType LocalizedText shall be mapped to ISDU Index 0x0012
(Product Name). As the name is intended to be locale-agnostic in IO-Link, the server
may provide it with any LocaleId, the string shall be mapped to the text part of the
LocalizedText. If the device does not support this ISDU Index, the DeviceID (0x09, 0x0A
and 0x0B of Direct Parameter Page 1) shall be used, and provided as integer
representation in the text-part.

• The Variable HardwareRevision of DataType String shall be mapped to ISDU Index
0x0016 (Hardware Revision). If the device does not support this ISDU Index, the
Variable shall not be provided.

• The Variable SoftwareRevision of DataType String shall be mapped to ISDU Index
0x0017 (Firmware Revision). If the device does not support this ISDU Index, the Variable
shall not be provided.

• The Variable DeviceHealth of DataType DeviceHealthEnum shall be mapped to ISDU
Index 0x0024 (Device Status). If the device does not support this ISDU Index, the
Variable shall not be provided. The mapping of the concrete values is defined in Table
10.

Table 10 – Mapping of IO-Link Device Status to OPC UA DeviceHealth

Device Status DeviceHealth

0 (Device is operating properly) NORMAL_0

1 (Maintenance-Required) MAINTENANCE_REQUIRED_4

OPC UA for IO-Link 27 Release 1.0

Device Status DeviceHealth

2 (Out-of-Specification) OFF_SPEC_3

3 (Functional-Check) CHECK_FUNCTION_2

4 (Failure) FAILURE_1

5 – 255 (Reserved) - (would return a bad code)

The ObjectType defines additional InstanceDeclarations:

• The mandatory Object General shall reference the Parameters and Methods defined in
Table 11. It provides Parameters and Methods that are generally available on IO-Link
Devices based on the IO-Link Specification.

Table 11 – References of General Object

References BrowseName Comment

Organizes ApplicationSpecificTag Variable defined in Table 12.

Organizes FunctionTag Variable defined in Table 12.

Organizes LocationTag Variable defined in Table 12.

Organizes ErrorCount Variable defined in Table 12.

Organizes DetailedDeviceStatus Variable defined in Table 12.

Organizes ProcessDataOutput Variable defined in Table 12.

Organizes ProcessDataInput Variable defined in Table 12.

Organizes OffsetTime Variable defined in Table 12.

Organizes ReadISDU Method defined in Table 16.

Organizes WriteISDU Method defined in Table 16.

Organizes SystemCommand Method defined in Table 16.

Organizes ParamUploadFromDeviceStart Method defined in Table 16.

Organizes ParamUploadFromDeviceStop Method defined in Table 16.

Organizes ParamDownloadToDeviceStart Method defined in Table 16.

Organizes ParamDownloadToDeviceStop Method defined in Table 16.

Organizes ParamDownloadToDeviceStore Method defined in Table 16.

Organizes ParamBreak Method defined in Table 16.

Organizes DeviceReset Method defined in Table 16.

Organizes ApplicationReset Method defined in Table 16.

Organizes RestoreFactorySettings Method defined in Table 16.

• The read-only Variable MinCycleTime shall be mapped to address 0x02 of Direct
Parameter Page 1. The value shall be mapped to Duration (see 12.2.7.2 for details).

• The read-only Variable RevisionID shall be mapped to address 0x04 of Direct Parameter
Page 1. The value (one byte) shall be mapped to a String using the following rules: The
MajorRev (Bit 4 to 7) shall be mapped to an Integer without leading zeros, the MinorRev
(Bit 0 to 3) shall be mapped to an Integer without leading zeros and composed to a
String as “<MajorRev>.<MinorRev>” . For example, the RevisionID for IO-Link 1.1 shall
become the String “1.1”.

• The read-only Variable VendorID shall be mapped to address 0x07 and 0x08 of Direct
Parameter Page 1. The value (two bytes) shall be mapped to an UInt16, using Big
Endian and 0x07 being the most significant byte (MSB).

• The read-only Variable DeviceID shall be mapped to address 0x09, 0x0A and 0x0B of
Direct Parameter Page 1. The value (three bytes) shall be mapped to an UInt32 (using
the lowest three bytes), using Big Endian and 0x09 being the MSB.

• The writable, optional Variable DeviceAccessLocks shall be mapped to ISDU Index
0x000C. The value (RecordT of BooleanT of length 16) shall be mapped to an UInt16,
where the lowest bit represents the first Boolean of the record. The Variable giv es
information whether the parameterization of the device is locked in general, the local
parameterization or the local user interface is locked (details see IO-Link Specification).

Release 1.0 28 OPC UA for IO-Link

By writing the Variable the locks can also be changed. If the device supports the ISDU
Index, the server shall provide the Variable, otherwise it shall not provide the Variable.

• The read-only Variable ProfileCharacteristic shall be mapped to ISDU Index 0x000D.
The value (array of UIntegerT16) shall be mapped to an array of UInt16. If the device
supports the ISDU Index, the server shall provide the Variable, otherwise it shall not
provide the Variable.

• The read-only Variable VendorText shall be mapped to ISDU Index 0x0011. The value
(StringT) shall be mapped to a String. If the device supports the ISDU Index, the server
shall provide the Variable, otherwise it shall not provide the Variable.

• The read-only Variable ProductID shall be mapped to ISDU Index 0x0013. The value
(StringT) shall be mapped to a String. If the device supports the ISDU Index, the server
shall provide the Variable, otherwise it shall not provide the Variable.

• The read-only Variable ProductText shall be mapped to ISDU Index 0x0014. The value
(StringT) shall be mapped to a String. If the device supports the ISDU Index, the server
shall provide the Variable, otherwise it shall not provide the Variable.

• The optional Alarms Object is used to group all alarms of the instance, in case the server
supports representing the alarms as Objects in the AddressSpace. If the server does
not support this, the Object shall not be provided.

7.1.3 Variables of ParameterSet

In Table 12, the Parameters of the ObjectType, referenced via the ParameterSet Object, are
defined.

Table 12 – ParameterSet of IOLinkDeviceType

References Node Class BrowseName DataType TypeDefinition Modelling Rule

The following Parameters are also referenced by the Identification Object

HasComponent Variable ApplicationSpecificTag String BaseDataVariableType Mandatory

HasComponent Variable FunctionTag String BaseDataVariableType Mandatory

HasComponent Variable LocationTag String BaseDataVariableType Mandatory

The following Parameters are also referenced by the General Object

HasComponent Variable ErrorCount UInt16 BaseDataVariableType Optional

HasComponent Variable DetailedDeviceStatus Byte[][3] BaseDataVariableType Optional

HasComponent Variable ProcessDataOutput Byte[] ProcessDataVariableType Mandatory

HasComponent Variable ProcessDataInput Byte[] ProcessDataVariableType Mandatory

HasComponent Variable OffsetTime Duration BaseDataVariableType Optional

The writeable Variable ApplicationSpecificTag shall be mapped to ISDU Index 0x0018. If the
device does not support this ISDU Index, the server shall provide the Variable nevertheless as
it can be written by the client. The server shall persist the value, i.e. the value shall still be
available after restart of the server. It is recommended to use the default value “***”. To allow
clients to distinguish if the ApplicationSpecificTag is managed in the device or by the server,
the Variable contains the read-only Property StoredInDevice as defined in Table 13. The value
shall be “True” if the IO-Link Device supports the Index, and “False” otherwise.

Note: If the ISDU Index 0x0018 exists but its value is not permanently stored in the device, the
server shall nevertheless not store the value persistently.

OPC UA for IO-Link 29 Release 1.0

Table 13 – Properties of ApplicationSpecificTag

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasProperty Variable StoredInDevice Boolean PropertyType Mandatory

The writeable Variable FunctionTag shall be mapped to ISDU Index 0x0019. If the device does
not support this ISDU Index, the server shall provide the Variable nevertheless as it can be
written by the client. The server shall persist the value, i.e. the value shall still be available after
restart of the server. It is recommended to use the default value “***”. To allow clients to
distinguish if the FunctionTag is managed in the device or by the server, the Variable contains
the read-only Property StoredInDevice as defined in Table 14. The value shall be “True” if the
device supports the Index, and “False” otherwise.

Note: If the ISDU Index 0x0019 exists but its value is not permanently stored in the device, the
server shall nevertheless not store the value persistently.

Table 14 – Properties of FunctionTag

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasProperty Variable StoredInDevice Boolean PropertyType Mandatory

The writeable Variable LocationTag shall be mapped to ISDU Index 0x001A. If the device does
not support this ISDU Index, the server shall provide the Variable nevertheless as it can be
written by the client. The server shall persist the value, i.e. the value shall still be available after
restart of the server. It is recommended to use the default value “***”. To allow clients to
distinguish if the LocationTag is managed in the device or by the server, the Variable contains
the read-only Property StoredInDevice as defined in Table 15. The value shall be “True” if the
device supports the Index, and “False” otherwise.

Note: If the ISDU Index 0x001A exists but its value is not permanently stored in the device, the
server shall nevertheless not store the value persistently.

Table 15 – Properties of LocationTag

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

HasProperty Variable StoredInDevice Boolean PropertyType Mandatory

The read-only Variable ErrorCount shall be mapped to ISDU Index 0x0020. The value
(UIntegerT of length 16) shall be mapped to an UInt16. If the device supports the ISDU Index,
the server shall provide the Variable, otherwise it shall not provide the Variable.

The read-only Variable DetailedDeviceStatus shall be mapped to ISDU Index 0x0025. The value
(ArrayT of OctetStringT3) shall be mapped to an Array of an Array of Bytes having the length
of 3 (the inner Array). (The OctetStringT3 is mapped to an Array of Bytes of length 3 and the
ArrayT to an Array.) The first entry in the inner Array is the first octet. If the device supports the
ISDU Index, the server shall provide the Variable, otherwise it shall not provide the Variable.

The read-only Variable ProcessDataInput shall be mapped to the cyclically data transferred
from the device. The value shall be mapped to a Byte[]. The Variable is of type
ProcessDataVariableType (see section 10.1). The ProcessDataLength Variable of
ProcessDataVariableType shall be mapped to address 0x05 of Direct Parameter Page 1. The
PDDescriptor Variable of ProcessDataVarableType shall be mapped to ISDU Index 0x000E if
the device supports the ISDU Index, otherwise the optional Variable shall not be provided. If
the PD status of the cyclic communication is set to 1 (invalid data), the StatusCode of the
ProcessDataInput shall become a bad code.

Release 1.0 30 OPC UA for IO-Link

The Variable ProcessDataOutput shall be mapped to the cyclically data transferred to the
device. It is vendor-specific, if the Variable is writeable. The value shall be mapped to a Byte[].
The Variable is of type ProcessDataVariableType (see section 10.1). The ProcessDataLength
Variable of ProcessDataVariableType shall be mapped to address 0x06 of Direct Parameter
Page 1. The PDDescriptor Variable of ProcessDataVarableType shall be mapped to ISDU Index
0x000F if the device supports the ISDU Index, otherwise the optional Variable shall not be
provided. If the IO-Link Device has not received the IO-Link Master command
‘ProcessDataOutputOperate’, the StatusCode of the ProcessDataOutput shall become a bad
code

The optional, writable Variable OffsetTime shall be mapped to ISDU Index 0x0030. The value
shall be mapped to Duration (see 12.2.7.2 for details). If the device supports the ISDU Index,
the server shall provide the Variable, otherwise it shall not provide the Variable .

7.1.4 Methods of MethodSet

In Table 16, the Methods of the ObjectType, referenced via the MethodSet Object are defined.
The first three Methods provide access rather on the protocol level and require the user calling
the Methods to understand those protocol-level data transfers. The other Methods are specific
IO-Link system commands mapped to OPC UA Methods.

Table 16 – MethodSet of IOLinkDeviceType

References Node Class BrowseName Modelling Rule

The following Methods are also referenced by the General Object

HasComponent Method ReadISDU Mandatory

HasComponent Method WriteISDU Mandatory

HasComponent Method SystemCommand Mandatory

HasComponent Method ParamUploadFromDeviceStart Mandatory

HasComponent Method ParamUploadFromDeviceStop Mandatory

HasComponent Method ParamDownloadToDeviceStart Mandatory

HasComponent Method ParamDownloadToDeviceStop Mandatory

HasComponent Method ParamDownloadToDeviceStore Mandatory

HasComponent Method ParamBreak Mandatory

HasComponent Method DeviceReset Mandatory

HasComponent Method ApplicationReset Mandatory

HasComponent Method RestoreFactorySettings Mandatory

7.1.4.1 ReadISDU

The Method ReadISDU reads parameters from the device using the ISDU mechanism.

Signature

ReadISDU (

 [in] UInt16 Index,

 [in] Byte SubIndex,

 [out] Byte[] Result,

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

OPC UA for IO-Link 31 Release 1.0

Argument Description

Index Index, 8-bit index and 16-bit index are both mapped to UInt16

SubIndex SubIndex, set to 0 if not used

Result Hex Values returned as data in case of a successful operation. Data needs to be
interpreted according to the IO-Link Specification. Empty array if operation was not
successful.

ErrorType Hex Values converted to UInt16 returned as ErrorType in case the operation was not
successful. Data needs to be interpreted according to the IO-Link Specification. 0 if the
operation was successful.

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running, either by same or different ISDU read or write

-2: Device not active, either device not connected, not in operation mode or port is
configured not to be in IO-Link mode

-3: Operation executed but error code returned from device, details are provided in
ErrorType

7.1.4.2 WriteISDU

The Method WriteISDU writes parameters on the device using the ISDU mechanism.

Signature

WriteISDU (

 [in] UInt16 Index,

 [in] Byte SubIndex,

 [in] Byte[] Data,

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

Argument Description

Index Index, 8-bit index and 16-bit index are both mapped to UInt16

SubIndex SubIndex, set to 0 if not used

Data Hex Values that need to be composed according to the IO-Link Specification

ErrorType Hex Values converted to UInt16 returned as ErrorType in case the operation was not
successful. Data needs to be interpreted according to the IO-Link Specification. 0 if the
operation was successful.

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running, either by same or different ISDU read or write

-2: Device not active, either device not connected, not in operation mode or port is
configured not to be in IO-Link mode

-3: Operation executed but error code returned from device, details are provided in
ErrorType

7.1.4.3 SystemCommand

The method SystemCommand executes an IO-Link SystemCommand as defined in IO-Link
Specification.

IO-Link SystemCommands shall be executed by an ISDU write request on Index 0x0002, or, in
case ISDUs are not supported, via a write on Index 0x0F on Direct Parameter Page 1.

Signature

SystemCommand (

 [in] Byte Cmd,

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

Release 1.0 32 OPC UA for IO-Link

Argument Description

Cmd Index of the SystemCommand

ErrorType Hex Values converted to UInt16 returned as ErrorType in case the operation was not
successful. Data needs to be interpreted according to the IO-Link Specification. 0 if the
operation was successful.

Note that in case the device supports no ISDUs and the SystemCommand is triggered
via writing Parameter Page 1, no indication of a positive or negative response is
provided and the ErrorType is always 0.

Note that the SystemCommand is optional. In case the IO-Link Device does not support
it, the ErrorType returned by the IO-Link Device shall be returned.

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running, either by same or different ISDU read or write

-2: Device not active, either device not connected, not in operation mode or port is
configured not to be in IO-Link mode

-3: Operation executed but error code returned from device, details are provided in
ErrorType

7.1.4.4 ParamUploadFromDeviceStart

This method executes the SystemCommand 0x01.

Signature

ParamUploadFromDeviceStart (

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

Argument Description

ErrorType Hex Values converted to UInt16 returned as ErrorType in case the operation was not
successful. Data needs to be interpreted according to the IO-Link Specification. 0 if the
operation was successful.

Note that in case the device supports no ISDUs and the SystemCommand is triggered
via writing Parameter Page 1, no indication of a positive or negative response is
provided and the ErrorType is always a 0.

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running, either by same or different ISDU read or write

-2: Device not active, either device not connected, not in operation mode or port is
configured not to be in IO-Link mode

-3: Operation executed but error code returned from device, details are provided in
ErrorType

7.1.4.5 ParamUploadFromDeviceStop

This method executes the SystemCommand 0x02. The same argument description as for
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

ParamUploadFromDeviceStop (

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

7.1.4.6 ParamDownloadToDeviceStart

This method executes the SystemCommand 0x03. The same argument description as for
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

ParamDownloadToDeviceStart (

 [out] UInt16 ErrorType,

OPC UA for IO-Link 33 Release 1.0

 [out] Int32 Status

);

7.1.4.7 ParamDownloadToDeviceStop

This method executes the SystemCommand 0x04. The same argument description as for
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

ParamDownloadToDeviceStop (

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

7.1.4.8 ParamDownloadToDeviceStore

This method executes the SystemCommand 0x05. The same argument description as f or
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

ParamDownloadToDeviceStore (

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

7.1.4.9 ParamBreak

This method executes the SystemCommand 0x06. The same argument description as for
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

ParamBreak (

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

7.1.4.10 DeviceReset

This method executes the SystemCommand 0x80. The same argument description as for
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

DeviceReset (

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

7.1.4.11 ApplicationReset

This method executes the SystemCommand 0x81. The same argument description as for
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

ApplicationReset (

 [out] UInt16 ErrorType,

Release 1.0 34 OPC UA for IO-Link

 [out] Int32 Status

);

7.1.4.12 RestoreFactorySettings

This method executes the SystemCommand 0x82. The same argument description as for
ParamUploadFromDeviceStart (see 7.1.4.4) applies.

Signature

RestoreFactorySettings (

 [out] UInt16 ErrorType,

 [out] Int32 Status

);

7.2 IOLinkIODDDeviceType

7.2.1 General information on IODDs

IODDs are defined in IODD Specification. When referencing this specification, we include the
XML schema files defining IODDs and the standard definitions XML documents. By default, the
IODD Specification Version 1.1 is referenced. If there are deviations between the Version 1.1
and Version 1.0.1, this is indicated in this specification.

When referencing parts of an IODD the following notation is used:

• Refencing an XML element of another XML element: <parent element>/<child element>,
for example DeviceIdentity/VendorUrl.

• Referencing an XML attribute of an XML element <parent element>/@<attribute>, for
example DeviceIdentity/@vendorId.

There are places where instances of an XML type are referenced, for example instance s of
VariableT or MenuT. In that case we reference to IODD Variables or IODD Menus.

7.2.2 Example

In Figure 12 an example of an instance of the IOLinkIODDDeviceType is shown. This example
is using only the mandatory InstanceDeclarations, in order to give an overview on the
ObjectType. Several Properties are directly connected to the Object, whereas the Parameters
are connected via the ParameterSet, Methods via the MethodSet and both organized via
different FunctionalGroups (Identification, General and Profiles).

OPC UA for IO-Link 35 Release 1.0

ExampleIOLinkIODDDevice

MinCycleTimeIdentification

VendorID

DeviceID

ApplicationSpecificTag

FunctionTag

LocationTag

non-grouped Properties

RevisionID

Manufacturer

Model

General

ProcessDataOutput

ProcessDataInput

ReadISDU

WriteISDU

SystemCommand

ParameterSet

MethodSet

. . .

StoredInDevice

StoredInDevice

StoredInDevice

VendorURL

DeviceName

Specialist

DeviceVariant

Maintenance

Observer

Organizes

Organizes

Organizes

ProductId

Name

Description

Figure 12 – Example instance of IOLinkIODDDeviceType (no optional
InstanceDeclarations shown)

Release 1.0 36 OPC UA for IO-Link

7.2.3 Overview

The IOLinkIODDDeviceType provides the structure that all ObjectTypes generated based on
IODDs have to provide and is formally defined in Table 17.

Table 17 – IOLinkIODDDeviceType Definition

Attribute Value

BrowseName IOLinkIODDDeviceType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of IOLinkDeviceType defined in 7.1.

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

Organizes Object Specialist FunctionalGroupType Mandatory

Organizes Object Maintenance FunctionalGroupType Mandatory

Organizes Object Observer FunctionalGroupType Mandatory

HasComponent Object IODDInformation FolderType -

HasComponent Object DeviceVariants FolderType -

HasComponent Object DeviceVariant DeviceVariantType Mandatory

HasProperty Variable VendorURL String Property Mandatory

HasProperty Variable DeviceName LocalizedText Property Mandatory

HasProperty Variable VendorLogo Image Property Optional

HasComponent Object 2:DeviceTypeImage FolderType Optional

The IOLinkIODDDeviceType ObjectType is an abstract type. Concrete subtypes are generated
for concrete IODDs (see section 7.3 for details).

The mandatory Object ParameterSet is inherited from the supertype and overridden in order to
add parameters defined in section 7.2.4.

The mandatory Object Specialist groups all menus of the SpecialistRoleMenuSet defined in an
IODD.

The mandatory Object Maintenance groups all menus of the MaintenanceRoleMenuSet defined
in an IODD.

The mandatory Object Observer groups all menus of the ObserverRoleMenuSet defined in an
IODD.

The Object IODDInformation provides information about the IODD and is only provided on the
ObjectType, not the instances of the ObjectType. Therefore, it does not have a ModellingRule.
Its content is defined in 7.2.5.

The Object DeviceVariants provides information about the IO-Link Device variants supported
by the ObjectType. It references all device variants (Objects of Type DeviceVariantType) with
a HasComponent Reference. Device variants are defined by the subtypes of this ObjectType.

The mandatory Object DeviceVariant provides information about the currently used device
variant on the instance.

The mandatory read-only Property VendorURL maps to the IODD DeviceIdentity/VendorURL
element.

The mandatory read-only Property DeviceName maps to the IODD DeviceIdentity/DeviceName
element. Localization should be considered. In IODD Specification Version 1.0.1 there is no
IODD DeviceIdentity/DeviceName element defined. Instead of, the IODD
DeviceVariant/ProductName element shall be used. Localization should be considered.

OPC UA for IO-Link 37 Release 1.0

The optional read-only Property VendorLogo maps to the IODD DeviceIdentity/VendorLogo
element, if the optional element is provided.

The optional Object DeviceTypeImage defined in OPC UA Part 100 is overridden in order to
reference Images of the DeviceVariant Object (see section 7.2.6).

7.2.4 Variables of the ParameterSet Object

In Table 18, the Variables of the ParameterSet Object of the IOLinkIODDDeviceType, are
defined.

Table 18 – ParameterSet of IOLinkIODDDeviceType

References Node Class BrowseName DataType TypeDefinition Modelling Rule

HasComponent Variable SupportedAccessLocks Byte OptionSetType Optional

The optional, read-only Variable SupportedAccessLocks maps to the IODD
Features/SupportedAccessLocks element. The lowest bit of the Byte references to parameter,
the next to dataStorage, the next to localParamaterization and the next to localUserInterface as
defined in SupportedAccessLocksT. The OptionSetValues Property shall be filled with those
names for locale “en”. Servers might provide translations to other languages. In IODD
Specification Version 1.0.1 there is no IODD Features/SupportedAccessLocks element.
Therefore, the OPC UA Variable SupportedAccessLocks is not provided for IODDs following the
IODD Specification Version 1.0.1.

7.2.5 Variables of the IODDInformation Object

In Table 19 the Variables of the IODDInformation Object of the IOLinkIODDDeviceType are
defined.

Table 19 – IODDInformation of IOLinkIODDDeviceType

References Node Class BrowseName DataType TypeDefinition Modelling Rule

HasProperty Variable Version String PropertyType Mandatory

HasProperty Variable ReleaseDate String PropertyType Mandatory

HasProperty Variable Copyright String PropertyType Mandatory

HasProperty Variable IOLinkRevision String PropertyType Mandatory

The mandatory, read-only Property Version maps to the IODD DocumentInfo/@version
attribute.

The mandatory, read-only Property ReleaseDate maps to the IODD
DocumentInfo/@releaseDate attribute.

The mandatory, read-only Property Copyright maps to the IODD DocumentInfo/@copyright
attribute.

The mandatory, read-only Property IOLinkRevision maps to the IODD
ProfileHeader/ProfileRevision element.

7.2.6 Variables of the DeviceTypeImage Object

In Table 20, references of the DeviceTypeImage Object of the IOLinkIODDDeviceType, are
defined.

Release 1.0 38 OPC UA for IO-Link

Table 20 – DeviceTypeImage of IOLinkIODDDeviceType

References Node Class BrowseName DataType TypeDefinition Modelling Rule

HasComponent Variable DeviceIcon References Variable DeviceIcon of DeviceVariant Object

HasComponent Variable DeviceSymbol References Variable DeviceSymbol of DeviceVariant Object

7.3 ObjectTypes generated based on IODDs

7.3.1 General

This clause defines how ObjectTypes shall be generated based on IODDs. For each IODD
managed by the Server, the Server shall have an ObjectType as subtype of the
IOLinkIODDDeviceType (see section 7.2).

The IsAbstract Attribute of the generated ObjectType shall be set to “False”.

The BrowseName Attribute of the generated ObjectType shall be mapped to the IODD
DeviceIdentity/DeviceName element using the default language. The DisplayName should use
the localization provided by the DeviceName.

The optional Description Attribute is vendor-specific and might be omitted.

7.3.2 NodeId of generated ObjectTypes and their InstanceDeclarations

Each NodeId that is used to describe the generated ObjectTypes shall use the Namespace
“http://opcfoundation.org/UA/IOLink/IODD” and the identifierType String. The String of the
NodeId of the ObjectType shall be composed of the VendorId, the DeviceId (in DeviceIdentity)
and the version of the IODD (in DocumentInfo) using the format:
“<VendorId>|<DeviceId>|<version>” like “888|67335 |V1.1”. The InstanceDeclarations use this
prefix followed by the BrowsePath. Variables and Methods, which might have several
BrowsePaths use the BrowsePath coming from ParameterSet respectively MethodSet, Objects
representing menus use the first BrowsePath that is defined in the IODD. The format is:
“<ObjectTypeNodeId>||<BrowseName>[:<BrowseName>]”. The BrowseName only contains the
String part, not the NamespaceIndex. An example is
“888|67335|V1.1||ParameterSet:V_LifeTimeYears” as string-part of the NodeId of a Variable.

Defining the NodeIds of ObjectTypes based on IODDs is necessary so that OPC UA Clients
accessing different OPC UA Servers implementing this specification and using the same IODDs
can identify that they actually deal with the same types.

7.3.3 Namespace of the BrowseNames

The BrowseNames used when generating ObjectTypes and their InstanceDeclarations shall use
the Namespace “http://opcfoundation.org/UA/IOLink/IODD”.

7.3.4 Mapping to InstanceDeclarations inherited from IOLinkIODDDeviceType

In general, on the instance all rules defined on the IOLinkIODDDeviceType or its supertypes
shall apply. When a new ObjectType is created, some InstanceDeclarations of the supertype
are overridden in order to provide information from the IODD like VendorId.

• The VendorID shall be filled with the IODD DeviceIdentity/@vendorId.

• The DeviceID shall be filled with the IODD DeviceIdentity/@deviceId.

• The Manufacturer shall be filled with the IODD DeviceIdentity/@vendorName.

• The VendorText shall be filled with the IODD DeviceIdentity/VendorText, taking the
default language.

http://opcfoundation.org/UA/IOLink/IODD
http://opcfoundation.org/UA/IOLink/IODD

OPC UA for IO-Link 39 Release 1.0

• The DeviceClass shall be filled with the IODD DeviceIdentity/DeviceFamily.

7.3.5 Mapping of IODD Menus

For each menu of the IODD UserInterface/MenuCollection that is referenced directly or
indirectly form the IODD UserInterface/ObserverRoleMenuSet, the IODD
UserInterface/MaintenanceRoleMenuSet or the IODD UserInterface/SpecialistRoleMenuSet, an
Object of ObjectType FunctionalGroupType is created.

The BrowseName of the Object shall be the Id of the IODD Menu. The DisplayName shall be
the Name of the IODD Menu. Localization should be considered. The optional Description
Attribute is vendor-specific and might be omitted.

For each IdentificationMenu reference (UIMenuSimpleRefT) from the IODD
UserInterface/ObserverRoleMenuSet, the IODD UserInterface/MaintenanceRoleMenuSet and
the IODD UserInterface/SpecialistRoleMenuSet a HasIdentificationMenu Reference shall be
created from the corresponding Object defined in section 7.2. The referenced Object shall have
the ModellingRule Mandatory.

For each ParameterMenu reference (UIMenuSimpleRefT) from the IODD
UserInterface/ObserverRoleMenuSet, the IODD UserInterface/MaintenanceRoleMenuSet and
the IODD UserInterface/SpecialistRoleMenuSet a HasParameterMenu Reference shall be
created from the corresponding Object defined in section 7.2. The referenced Object shall have
the ModellingRule Mandatory.

For each ObservationMenu reference (UIMenuSimpleRefT) from the IODD
UserInterface/ObserverRoleMenuSet, the IODD UserInterface/MaintenanceRoleMenuSet and
the IODD UserInterface/SpecialistRoleMenuSet a HasObservationMenu Reference shall be
created from the corresponding Object defined in section 7.2. The referenced Object shall have
the ModellingRule Mandatory.

For each DiagnosisMenu reference (UIMenuSimpleRefT) from the IODD
UserInterface/ObserverRoleMenuSet, the IODD UserInterface/MaintenanceRoleMenuSet and
the IODD UserInterface/SpecialistRoleMenuSet an HasDiagnosisMenu Reference shall be
created from the corresponding Object defined in section 7.2. The referenced Object shall have
the ModellingRule Mandatory.

In Figure 13 an example of how to map IODD menus is shown. On the left, an excerpt of an
IODD is shown, and on the right, the OPC UA representation.

ExampleIOLinkIODDDeviceType

organizes

FunctionalGroupType

Observer

FunctionalGroupType

Maintenance

FunctionalGroupType

Specialist

organizes

organizes

HasIdentificationMenu

FunctionalGroupType

Identification

FunctionalGroupType

ObservationHasObserverMenu

FunctionalGroupType

Identification

FunctionalGroupType

Parameter

FunctionalGroupType

Diagnosis

HasDiagnosisMenu

HasParameterMenu

...

HasObserverMenu

HasObserverMenu

HasParameterMenu

HasDiagnosisMenu

HasIdentificationMenu

HasIdentificationMenu

Release 1.0 40 OPC UA for IO-Link

Figure 13 – Example on how to map IODD Menus from UserInterface

For each IODD Menu that has been added all MenuRefs shall reference the corresponding
Objects with an Organizes Reference. If at least one IODD UIMenuRef does not provide an
IODD MenuRef/Condition element, the ModellingRule shall be Mandatory, otherwise it shall be
Optional.

In Figure 14 another example of how to map IODD menus is shown. On the left, an excerpt of
an IODD is shown, and on the right, the OPC UA representation. In this example, IODD Menus
contain other IODD Menus.

ExampleIOLinkIODDDeviceType

FunctionalGroupType

Maintenance

organizes

FunctionalGroupType

Parameter
HasParameterMenu

FunctionalGroupType

Operation Parameter

FunctionalGroupType

Teach-In Parameter

FunctionalGroupType

Operation Mode Configuration

FunctionalGroupType

Event Configuration

FunctionalGroupType

I/O Configuration

FunctionalGroupType

DeviceLocks

Organizes

Organizes

Organizes

Organizes

Organizes

Organizes

FunctionalGroupType

Switching Signal 1 Parameter

FunctionalGroupType

Switching Signal 2 Parameter

Organizes

Organizes

FunctionalGroupType

Process Data Configuration
Organizes

Figure 14 – Example on how to map IODD Menus containing IODD Menus

7.3.6 Mapping of IODD Variables

For each IODD Variable defined in the IODD an OPC UA Variable is created that is referenced
from the ParameterSet with a HasComponent Reference. The ModellingRule shall be
Mandatory for each of those Variables.

Each Object representing a menu referencing the Variable via a VariableRef not defining a
Button shall reference the Variable with an Organizes Reference.

Each Object representing a menu referencing the Variable via a RecordItemRef not defining a
Button shall reference the corresponding Sub-Variable with an Organizes Reference.

The BrowseName of the Variable shall be the Id of IODD Variable and the DisplayName the
Name of the IODD Variable. Localization should be considered. The Description Attribute shall
be the Description of IODD Variable. Localization should be considered.

The VariableType, DataType, ValueRank and ArrayDimensions are set according to section 12
depending on the Datatype or DatatypeRef. In addition, the VariableRef or RecordItemRef
defines some characteristics that need to be considered.

• If at least one VariableRef contains a unitCode the Variable shall have the Property
EngineeringUnits. If more than one VariableRef references the IODD Variable and all
VariableRefs contain the unitCode, the EngineeringUnits shall have the ModellingRule
Mandatory, otherwise the ModellingRule Optional. The value of EngineeringUnits is

OPC UA for IO-Link 41 Release 1.0

vendor-specific because several VariableRefs might define different un itCodes. It might
be omitted on the InstanceDeclaration.

• If at least one VariableRef contains a displayFormat the Variable shall have the Property
DisplayFormat (see section 13.6). If all VariableRefs contain the displayFormat, the
DisplayFormat shall have the ModellingRule Mandatory, otherwise the ModellingRule
Optional. The value of DisplayFormat is vendor-specific. It might be omitted on the
InstanceDeclaration.

The same rules apply for the sub-variables referenced based on the RecordItemRefs.

The accessRightRestriction is ignored on the ObjectType and only considered on the instances.

In Figure 15 an example is shown of how to map IODD Variables referenced from an IODD
Menu to OPC UA.

BaseObjectType

ParameterSet
FunctionalGroupType

Sensor Configuration

Detection

Threshold
Organizes

EngineeringUnits

DisplayFormat

Detection

Hysteresis
Organizes

Stability Control

Threshold
Organizes

ModellingRule

Mandatory

HasModellingRule

HasModellingRule

Figure 15 – Example on how to map Variables

In Figure 16 another example is shown. In this example, the VariableRefs to the same IODD
Variable contain different information.

Release 1.0 42 OPC UA for IO-Link

FunctionalGroupType

Temperature Measurement

FunctionalGroupType

Temperature Value (°C, °F)

Organizes

Organizes

Temperature

BaseObjectType

ParameterSet

Organizes

DisplayFormat

EngineeringUnits

FunctionalGroupType

Temperature Value (Raw)

ModellingRule

Optional

HasModellingRule

HasModellingRuleOrganizes

Figure 16 – Example on how to map Variables with different VariableRefs

In Figure 17 an example on how to map RecordItemRefs is shown.

BaseObjectType

ParameterSet
FunctionalGroupType

Switching Signal 1 Parameter

Switching Signal 1

OrganizesSetpoint 1

Setpoint 2

Switching Signal 1 Configuration

Switchpoint Logic

Switchpoint Mode

Switchpoint Hysteresis

Setpoint Offset for Switching

Signal 1

Organizes

Organizes

Organizes

Organizes

Organizes

OPC UA for IO-Link 43 Release 1.0

Figure 17 – Example on how to map Variables with RecordItemRefs

7.3.7 Mapping of Methods from IODD Menus

VariableRefs and RecordItemRefs can define Buttons. Those IODD Buttons are mapped to OPC
UA Methods.

For each Button-defining VariableRef or RecordItemRef from an IODD Menu that is used in the
mapping (see section 7.3.5) an OPC UA Method is created, that is referenced with a
HasComponent Reference from the MethodSet Object.

In case several VariableRefs or RecordItemRefs have the same characteristics (Description,
ActionStartedMessage, buttonValue, and in case of RecordItemRefs same subindex), only one
Method is created.

The Objects representing the IODD Menus shall reference the corresponding Methods with
Organizes References.

If at least one Object representing an IODD Menu referencing the Method has the ModellingRule
Mandatory the Method shall have the ModellingRule Mandatory, otherwise Optional.

The BrowseName of the Method shall be the Id of the IODD Variable combined with the
buttonValue. The format is “<Id>|<buttonValue>”. In the unlikely case that the IODD Variable is
referenced several times as Button with the same buttonValue but different other characteristics
(Description and ActionStartedMessage), the additional Methods have a BrowseName postfixed
by a number using the format “<Id>|<buttonValue>_<n>” where “n” is the occurrence in the
order of the IODD, starting with a 2 for the second occurrence.

The DisplayName shall be the Description of the IODD Button, if a Description is provided.
Localization should be considered. If no Description is provided, the DisplayName should be
the BrowseName. The optional Description Attribute is vendor-specific and might be omitted.

The Methods shall not have input- or output-arguments. If the optional ActionStartedMessage
of the IODD Button is provided, there shall be a Property with BrowseName
“ActionStartedMessage” and the DataType String, providing the ActionStartedMessage of the
IODD Button.

Note: The way a button is modelled inside an IODD VariableRef element changed from IODD
Specification Version 1.0.1 to Version 1.1. The information modelled in IODD Specifica tion
Version 1.1 in the elements Description and ActionStartedMessage is not provided in IODD
Specification Version 1.0.1.

The server-internal implementation of the Method shall implement the IODD Button according
to the IODD Specification.

An example on how to map IODD Buttons to OPC UA Methods is shown in Figure 18.

Release 1.0 44 OPC UA for IO-Link

BaseObjectType

MethodSet

FunctionGroupType

Teach-In Parameter

Teach-In Setpoint 1

Teach-In Setpoint 2

Teach-In

Measurement Offset

Organizes

Organizes

Organizes

BaseObjectType

ParameterSet

OrganizesTeach-in Channel

Figure 18 – Example on how to map IODD Buttons to OPC UA Methods

7.3.8 Mapping of StdVariableRef and StdRecordItemRef

The StdVariableRefs (standard variable references) reference to standardized information, t hat
is already defined in the IOLinkDeviceType. In Table 21, an overview of the mapping is given.

Table 21 – Mapping of StdVariableRefs to IOLinkDeviceType Instance Declarations

StdVariableRef InstanceDeclaration

V_SystemCommand MethodSet/SystemCommand

V_DeviceAccessLocks DeviceAccessLocks

V_VendorName Manufacturer

V_VendorText VendorText

V_ProductName Model

V_ProductID ProductID

V_ProductText ProductText

V_SerialNumber SerialNumber

V_HardwareRevision DeviceRevision

V_FirmwareRevision SoftwareRevision

V_ApplicationSpecificTag

(V_ApplicationSpecificName for IODDs
based on IODD Specification 1.01)

ParameterSet/ApplicationSpecificTag

V_ErrorCount ParameterSet/ErrorCount

V_DeviceStatus

(not defined in IODD Specification 1.01)

ParameterSet/DeviceHealth

V_DetailedDeviceStatus

(not defined in IODD Specification 1.01)

ParameterSet/DetailedDeviceStatus

V_ProcessDataInput

(V_ProcessDataIn for IODDs based on
IODD Specification 1.01)

ParameterSet/ProcessDataInput

V_ProcessDataOutput

(V_PrcoessDataOut for IODDs based on
IODD Specification 1.01)

ParameterSet/ProcessDataOutput

V_OffsetTime ParameterSet/OffsetTime

The StdRecordItemRefs (standard record item references) reference to standardized
information, that is already defined in the IOLinkDeviceType. In Table 22, an overview of the
mapping is given.

OPC UA for IO-Link 45 Release 1.0

Table 22 – Mapping of StdRecordItemRefs to IOLinkDeviceType Instance Declarations

StdRecordItemRef InstanceDeclaration

V_DirectParameters_1 STD_TN_MasterCycleTime -

V_DirectParameters_1 STD_TN_MinCycleTime MinCycleTime

V_DirectParameters_1 STD_TN_M-SequenceCapability -

V_DirectParameters_1 STD_TN_RevisionID RevisionID

V_DirectParameters_1 STD_TN_ProcessDataIn ParameterSet/ProcessDataInput/ProcessDataLength

V_DirectParameters_1 STD_TN_ProcessDataOut ParameterSet/ProcessDataOutput/ProcessDataLength

V_DirectParameters_1 STD_TN_VendorID1 VendorID

V_DirectParameters_1 STD_TN_VendorID2 VendorID

V_DirectParameters_1 STD_TN_DeviceID1 DeviceID

V_DirectParameters_1 STD_TN_DeviceID2 DeviceID

V_DirectParameters_1 STD_TN_DeviceID3 DeviceID

V_DirectParameters_1 STD_TN_SystemCommand -

V_DirectParameters_2 STD_TN_DeviceSpecific_1 -

V_DirectParameters_2 STD_TN_DeviceSpecific_2 -

V_DirectParameters_2 STD_TN_DeviceSpecific_3 -

V_DirectParameters_2 STD_TN_DeviceSpecific_4 -

V_DirectParameters_2 STD_TN_DeviceSpecific_5 -

V_DirectParameters_2 STD_TN_DeviceSpecific_6 -

V_DirectParameters_2 STD_TN_DeviceSpecific_7 -

V_DirectParameters_2 STD_TN_DeviceSpecific_8 -

V_DirectParameters_2 STD_TN_DeviceSpecific_9 -

V_DirectParameters_2 STD_TN_DeviceSpecific_10 -

V_DirectParameters_2 STD_TN_DeviceSpecific_11 -

V_DirectParameters_2 STD_TN_DeviceSpecific_12 -

V_DirectParameters_2 STD_TN_DeviceSpecific_13 -

V_DirectParameters_2 STD_TN_DeviceSpecific_14 -

V_DirectParameters_2 STD_TN_DeviceSpecific_15 -

V_DirectParameters_2 STD_TN_DeviceSpecific_16 -

In both cases, the following rule applies.

If there is an InstanceDeclaration on the IOLinkDeviceType:

• If the StdVariableRef or StdRecordItemRef is not defining a Button and the
InstanceDeclaration is a Variable, the InstanceDeclaration shall be overridden in the
new created type and referenced from all Objects representing IODD Menus having such
a reference. If a default value is defined, the OPC UA Server shall use this as Value of
the Variable, if several different default values are defined, the first one defined in the
IODD shall be used. Other characteristics defined on the StdVariableRef of
StdRecordItemRef are ignored.

For VendorID and DeviceID there are two resp. three StdRecordItemRefs used. In the
mapping, whenever an IODD Menu references at least one of them, the whole Variable
(VendorID or DeviceID) is referenced.

• If the StdVariableRef or StdRecordItemRef is defining a Button, the rules defined in
7.3.7 apply.

If there is no InstanceDeclaration on the IOLinkDeviceType defined, the same rules as for
VariableRef and RecordItemRef defined in 7.3.6 and 7.3.7 apply.

Note that for V_SystemCommand the mapping described in this section applies, although there
is a representation in the IOLinkDeviceType (SystemCommand Method) , because the IODD
provides useful new information about the supported system commands .

7.3.9 Mapping of ProcessDataCollection and ProcessDataRefCollection

The ProcessDataCollection gives an interpretation of the input and / or output process data.

Release 1.0 46 OPC UA for IO-Link

For each entry of the collection (IODD ProcessData) having an IODD ProcessDataOut of type
ProcessDataItemT, for each IODD ProcessDataOut, a new sub-variable of the OPC UA Variable
ProcessDataOutput is created, having the BrowseName composed of the ProcessData id and
the ProcessDataItem id (“<ProcessData id>|<ProcessDataItem id>”). If the ProcessData has a
Condition, the Variable becomes optional, otherwise mandatory. In order to add a sub-variable
to the ProcessDataOutput Variable defined on the IOLinkDeviceType, the ProcessDataOutput
Variable needs to be overridden on the new created IODD-based subtype.

For each entry of the collection (IODD ProcessData) having a ProcessDataIn of type
ProcessDataItemT, for each ProcessDataIn, a new sub-variable of ProcessDataInput is created,
having the BrowseName composed of the ProcessData id and the ProcessDataItem id
(“<ProcessData id>|<ProcessDataItem id>”). If the ProcessData has a Condition, the Variable
becomes optional, otherwise mandatory. In order to add a sub-variable to the ProcessDataInput
Variable defined on the IOLinkDeviceType, the ProcessDataInput Variable needs to be
overridden on the new created IODD-based subtype.

In both cases the DisplayName shall be the Name element of the ProcessDataItem . Localization
should be considered. The DataType is chosen for the Datatype element or DatatypeRef
element according to section 12.

The ProcessDataRefCollection can provide additional characteristics for the created Variables,
like unitCode and displayFormat. Note that the optional ProcessDataRefCollection and its child
elements are not supported by IODD Specification Version 1.0.1.

If the ProcessDataRef contains a unitCode the Variable shall have the Property
EngineeringUnits as mandatory. The value shall be as defined in the ProcessDataRef (see
Annex C).

If the ProcessDataRef contains a displayFormat the Variable shall have the Property
DisplayFormat (see 13.6) as mandatory. The value shall be as defined in the ProcessDataRef .

In Figure 19 an example is shown on how to map an IODD ProcessDataCollection.

OPC UA for IO-Link 47 Release 1.0

ExampleIOLinkIODDDeviceType

ProcessDataInput

ProcessDataOutput

...

ProcessDataLength

PDDescriptor

Output Process Data [Easy Mode]

Output Process Data [Expert Mode]

Read

Write

Write data

C
o

n
d

it
io

n
: c

on
fi

gu
ra

ti
o

nB
it

s
=

12
8

(*)

Condition: configurationBits = 0

(*)

(*) only one of those two groups of menus will be
shown on the instance, depending on the condition

Figure 19 – Example on how to map IODD ProcessDataCollection

7.3.10 Mapping of DirectParameterOverlay

In case the DirectParameterOverlay is defined in the IODD, the mapping shall be the same as
for Variables with respect to the DataType (RecordT). The BrowseName shall be
“DirectParameterPage2”, and the DisplayName the same for locale “en” and might provide
translations. A vendor-specific Description might be provided.

7.3.11 Mapping of Default Values

In different places of the IODD default values can be defined.

• The DirectParameterOverlay can define default values for the individual entries

• The StdVariableRef can define default values

• The Variable can define default values

• The RecordItemInfo and StdRecordItemRef can define default values

In all cases the default value shall be provided as value of the corresponding Variables on the
ObjectType. In case of StdVariableRefs the Variables are already defined in the supertype and
need to be overridden on the IODD-based type in order to provide the default value.

An example on how to map DefaultValues is shown in Figure 20.

Release 1.0 48 OPC UA for IO-Link

IoLinkIODDDeviceType

ProductName

ProductText

ExampleIoLinkIODDDeviceType

...

ProductName

ProductText

...

ParameterSet

Tag Type

Value = IQT1 18GM/F61/FP series

Value = RFID read/write station (HF, ISO 156 3)“

Value = 20

Figure 20 – Example on how to map Default Values

7.3.12 Mapping of DeviceVariantCollection

All entries of the DeviceVariantCollection are mapped to instances of DeviceVariantType
according to section 7.7. The Objects are referenced from the DeviceVariants Object with a
HasComponent Reference.

The first entry of the DeviceVariantCollection is also mapped to the DeviceVariant Object.

In Figure 21 an example is given.

ExampleIoLinkIODDDeviceType

DeviceVariantType

DeviceVariant

FolderType

DeviceVariants

DeviceVariantType

IQT1-18GM-IO-V1

DeviceVariantType

IQT1-F61-IO-V1

DeviceVariantType

IQT1-FP-IO-V1

ProductId

Description

Name

DeviceIcon

DeviceSymbol

Figure 21 – Example on how to map DeviceVariantCollection

OPC UA for IO-Link 49 Release 1.0

7.3.13 Mapping of EventCollection

Information about Events (Notification) is not mapped to additional EventTypes, but the
IOLinkIODDDeviceEventType is used.

When an IO-Link Device sends a Notification, and the server manages the IODD for the IO-Link
Device, an Event of the IOLinkIODDDeviceEventType is generated according to the EventType
definition.

Information about Alarms (Warning and Error) is not mapped to additional EventTypes, but the
IOLinkIODDDeviceAlarmType is used. If the OPC UA server supports Alarm Objects
represented in the AddressSpace, the server may provide the Alarms Object on the ObjectType
and provide all possible Alarms as Objects based on the IODD.

When an IO-Link Device sends a Warning or Error, and the server manages the IODD for the
IO-Link Device, an Event of the IOLinkIODDDeviceAlarmType is generated according to the
EventType definition.

7.4 Creation of Instances based on ObjectTypes generated out of IODDs

When an instance is created based on an ObjectType generated out of an IODD, two scenarios
need to be considered.

1. Either an IO-Link Device is connected and thus conditions can be evaluated or

2. no IO-Link Device is connected but the IO-Link Port is configured in IOL_MANUAL (see
section 6.1.7).

In the second case all optional Objects, Variables and Methods are omitted and only the
mandatory Objects, Variables and Methods are provided. Except for VendorID and DeviceID,
which shall expose the configured DeviceID and VendorID on the IO-Link Port, all Variables
cannot be read or written and all Methods cannot be executed. The server shall report a
Bad_NoCommunication StatusCode in those cases.

In the first case the Conditions on the MenuRefs and ProcessData are evaluated and the
Objects and Variables are only provided when they are referenced (either directly or indirectly)
based on the Condition evaluation.

Some characteristics of a Variable like the unitCode (see Annex C), displayFormat (see
section 13.6) and additional accessRightRestriction are defined in the VariableRef of the IODD.
A Variable can be referenced by several Var iableRefs. Typically, in an IODD all valid
VariableRefs (from menus which are active based on the Condition) to the same Variable use
the same characteristics. But this is not required. Since the characteristics are exposed in OPC
UA on the Variable, and not the reference to the Variable, the following rules apply for creating
an instance.

The Variable referenced from the ParameterSet Object uses the characteristics as defined b y
the first active menu in the MenuCollection of the IODD. For a Var iableRef with different
characteristics a new Variable is defined referenced by the initially created Variable with a
HasComponent Reference. It provides the different characteristics and uses the same
BrowseName and mapping as the initial Variable. All Var iableRefs that have characteristics that
already have a Variable representing the characteristics shall reference that Variable.

In addition to the AccessLevel defined in section 12, the accessRightRestriction of the
VariableRef and the accessRights on the IODD Variable shall be considered. Also, the offset
and gradient to change the raw value coming from the IO-Link Device shall be considered.

Release 1.0 50 OPC UA for IO-Link

In case the raw value is changed in the Variable (offset and/or gradient are defined in the IODD),
there shall be a Sub-Variable on the OPC UA Variable instance with the BrowseName
“RawValue” providing the raw value from the IO-Link Device.

When the IODD provides default values for a Variable in OPC UA, and the server has not
already read the value from the IO-Link Device, the default value should be provided with
StatusCode Uncertain_InitialValue.

The DeviceVariant Object is filled with the DeviceVariant according to the ProductI D of the IO-
Link Device. If the IO-Link Device does not provide this optional parameter or ProductID does
not correspond to a DeviceVariant specified in the IODD, the OPC UA Server shall use the first
DeviceVariant defined in the IODD.

If the optional DeviceSymbol or DeviceIcon Variable exist on the DeviceVariant Object, the
DeviceTypeImage Folder defined in OPC UA Part 100 shall be provided. The DeviceTypeImage
Folder shall reference the DeviceSymbol and the DeviceIcon with a HasComponent Reference
if those Variables are provided on the DeviceVariant Object.

When the blockParameter attribute is defined and set to “False” in the IODD, the Methods
ParamUploadFromDeviceStart, ParamUploadFromDeviceStop, ParamDownloadToDeviceStart,
ParamDownloadToDeviceStop, and ParamBreak shall have the Executable Attribute set to
“False”.

When the dataStorage attribute is defined and set to “False” in the IODD, the Method
ParamDownloadToDeviceStore shall have the Executable Attribute set to “False”.

In Figure 22 an example of an Object based on an IODD is shown.

OPC UA for IO-Link 51 Release 1.0

F
u

n
c
tio

n
a

lG
ro

u
p

T
y
p

e

P
a

ra
m

e
te

r

F
u

n
c
tio

n
a

lG
ro

u
p

T
y
p

e

M
_
O

R
_
d
ig

ita
l_

o
u
tp

u
t1

_
1
0
0
1

F
u

n
c
tio

n
a

lG
ro

u
p

T
y
p

e

D
ig

ita
l o

u
tp

u
t (O

U
T

1
)

F
u
n
c
tio

n
a
lG

ro
u
p
T

y
p
e

A
n

a
lo

g
 O

u
tp

u
t (O

U
T

2
)

F
u

n
c
tio

n
a

lG
ro

u
p

T
y
p

e

E
x
te

n
d
e
d
 fu

n
c
tio

n
s

F
u
n
c
tio

n
a
lG

ro
u
p
T

y
p
e

M
_

O
R

_
d

ig
ita

l_
o

u
tp

u
t1

_
1

0
0

1

F
u
n
c
tio

n
a
lG

ro
u
p
T

y
p
e

D
ig

ita
l o

u
tp

u
t (O

U
T

1
)

F
u

n
c
tio

n
a

lG
ro

u
p

T
y
p

e

A
n
a
lo

g
 O

u
tp

u
t (O

U
T

2
)

F
u
n
c
tio

n
a
lG

ro
u
p
T

y
p
e

E
x
te

n
d

e
d

 fu
n

c
tio

n
s

F
u

n
c
tio

n
a

lG
ro

u
p

T
y
p

e

S
e

tu
p

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

S
w

itc
h

 p
o

in
t [d

o
.S

P
]

R
e

s
e

t p
o

in
t [d

o
.rP

]

O
u

tp
u

t fu
n

c
tio

n
 [d

o
.F

n
]

S
w

itc
h

in
g

 d
e

la
y
 [d

o
.d

S
]

R
e

s
e

t d
e

la
y
 [d

o
.d

r]

S
w

itc
h
 p

o
in

t [d
o
.S

P
]

R
e

s
e

t p
o

in
t [d

o
.rP

]

B
a

s
e

O
b
je

c
tT

y
p

e

P
a
ra

m
e
te

rS
e
t

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

O
rgan

ize
s

R
a

w
V

a
lu

e

D
is

p
la

y
F

o
rm

a
t

V
a

lu
e

 =
 D

e
c
.1

R
a

w
V

a
lu

e

D
is

p
la

y
F

o
rm

a
t

V
a

lu
e

 =
 D

e
c
.1

R
a

w
V

a
lu

e

D
is

p
la

y
F

o
rm

a
t

V
a

lu
e

 =
 D

e
c
.1

R
a

w
V

a
lu

e

D
is

p
la

y
F

o
rm

a
t

V
a

lu
e

 =
 D

e
c
.1

R
a

w
V

a
lu

e

D
is

p
la

y
F

o
rm

a
t

V
a

lu
e

 =
 D

e
c
.1

R
a

w
V

a
lu

e

D
is

p
la

y
F

o
rm

a
t

V
a

lu
e

 =
 D

e
c
.1

E
n

g
in

e
e

rin
g

U
n

its

n
a

m
e

s
p

a
c

e
U

ri =
 h

ttp
://w

w
w

.o
p

c
fo

u
n

d
a

tio
n

.o
rg

/U
A

/u
n

its
/u

n
/c

e
fa

c
t

u
n

itId
 =

 5
4

5
7

2
1

9
; d

is
p

la
y

N
a

m
e

 =
 {“e

n
 s

"}; d
e

s
c

rip
tio

n
 =

 {“e
n
 "s

e
c

o
n

d
 [u

n
it o

f tim
e

]"}}

E
n

g
in

e
e

rin
g

U
n

its

n
a

m
e

s
p

a
c

e
U

ri =
 h

ttp
://w

w
w

.o
p

c
fo

u
n

d
a

tio
n

.o
rg

/U
A

/u
n

its
/u

n
/c

e
fa

c
t

u
n

itId
 =

 5
4

5
7

2
1

9
; d

is
p

la
y

N
a

m
e

 =
 {“e

n
 s

"}; d
e

s
c

rip
tio

n
 =

 {“e
n
 "s

e
c

o
n

d
 [u

n
it o

f tim
e

]"}}

E
n

g
in

e
e

rin
g

U
n

its

n
a

m
e

s
p

a
c

e
U

ri =
 h

ttp
://w

w
w

.o
p

c
fo

u
n

d
a

tio
n

.o
rg

/U
A

/u
n

its
/u

n
/c

e
fa

c
t

u
n

itId
 =

 4
4

0
8

6
5

2
; d

is
p

la
y

N
a

m
e

 =
 {“e

n
 °C

"}; d
e

s
c

rip
tio

n
 =

 {“e
n
 "d

e
g

re
e

 C
e

ls
iu

s
"}}

E
n

g
in

e
e

rin
g

U
n

its

n
a

m
e

s
p

a
c

e
U

ri =
 h

ttp
://w

w
w

.o
p

c
fo

u
n

d
a

tio
n

.o
rg

/U
A

/u
n

its
/u

n
/c

e
fa

c
t

u
n

itId
 =

 4
4

0
8

6
5

2
; d

is
p

la
y

N
a

m
e

 =
 {“e

n
 °C

"}; d
e

s
c

rip
tio

n
 =

 {“e
n
 "d

e
g

re
e

 C
e

ls
iu

s
"}}

E
n

g
in

e
e

rin
g

U
n

its

n
a

m
e

s
p

a
c

e
U

ri =
 h

ttp
://w

w
w

.o
p

c
fo

u
n

d
a

tio
n

.o
rg

/U
A

/u
n

its
/u

n
/c

e
fa

c
t

u
n

itId
 =

 4
6

0
4

2
3

2
; d

is
p

la
y

N
a

m
e

 =
 {“e

n
 °F

"}; d
e

s
c

rip
tio

n
 =

 {“e
n
 "d

e
g

re
e

 F
a

h
re

n
h

e
it"}}

E
n

g
in

e
e

rin
g

U
n

its

n
a

m
e

s
p

a
c

e
U

ri =
 h

ttp
://w

w
w

.o
p

c
fo

u
n

d
a

tio
n

.o
rg

/U
A

/u
n

its
/u

n
/c

e
fa

c
t

u
n

itId
 =

 4
6

0
4

2
3

2
; d

is
p

la
y

N
a

m
e

 =
 {“e

n
 °F

"}; d
e

s
c

rip
tio

n
 =

 {“e
n
 "d

e
g

re
e

 F
a

h
re

n
h

e
it"}}

Condition: Unit = Condition: Unit =

(*)

(*)

(*) o
n

ly o
n

e o
f th

o
se

 tw
o

 gro
u

p
s o

f m
e

n
u

s w
ill b

e
sh

o
w

n
, d

e
p

e
n

d
in

g o
n

 th
e

 co
n

d
itio

n

Figure 22 – Example of an Object based on an IODD

Release 1.0 52 OPC UA for IO-Link

In Figure 23, an example of an Object based on an IODD is shown, where an IODD Variable is
referenced by VariableRefs with different characteristics.

FunctionalGroupType

Temperature Measurement

FunctionalGroupType

Temperature Value (°C, °F)

Organizes

Organizes

Temperature

Temperature

BaseObjectType

ParameterSet

Organizes

DisplayFormat

Value = Dec.1

EngineeringUnits

namespaceUri = http:/ /

www.opcfoundation.org/UA/units/un/cefact

unitId = 4408652;

displayName = {“en °C"};

descript ion = {“en "degree Celsius"}}

FunctionalGroupType

Temperature Value (Raw)

Organizes

Temperature

RawValue

DisplayFormat

Value = Dec.1

EngineeringUnits

namespaceUri = http:/ /

www.opcfoundation.org/UA/units/un/cefact

unitId = 4604232;

displayName = {“en °F"};

descript ion = {“en "degree Fahrenheit"}}

Organizes

Figure 23 – Example of an Object based on an IODD using different VariableRefs

7.5 IOLinkMasterType ObjectType Definition

7.5.1 Example

In Figure 24 an example of an instance of the IOLinkMasterType is shown. The example is using
only the mandatory InstanceDeclarations, in order to give an overview on the ObjectType.
Several Properties are directly connected to the Object, whereas the Parameters are connected
via the ParameterSet, Methods via the MethodSet and both are organized via different
FunctionalGroups (Identification, Capabilities, Statistics and Management).

OPC UA for IO-Link 53 Release 1.0

ExampleIOLinkMaster

Master-

Configuration-

Disabled

Identification

DeviceID

ApplicationSpecificTag

FunctionTag

LocationTag

non-grouped Properties

Capabilities

MaxNumberOfPorts

MaxPowerSupply

Restart

ResetStatisticsOnAllPorts

IoLinkPortType

Port1

ParameterSet

MethodSet

MasterType

Statistics

DateOfLastStatisticsReset

NumberOfIOLinkMasterRestarts

Management

no details of Port 1 are shown

EngineeringUnits

Figure 24 – Example instance of IOLinkMasterType (only mandatory
InstanceDeclarations)

Release 1.0 54 OPC UA for IO-Link

7.5.2 Overview

The IOLinkMasterType provides information of an IO-Link Master and is formally defined in
Table 23.

Table 23 – IOLinkMasterType Definition

Attribute Value

BrowseName IOLinkMasterType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of TopologyElementType defined in OPC UA Part 100.

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

HasComponent Object 2:MethodSet BaseObjectType Mandatory

HasComponent Object 2:Identification FunctionalGroupType Mandatory

HasComponent Object Capabilities FunctionalGroupType Mandatory

HasComponent Object Management FunctionalGroupType Mandatory

HasComponent Object Statistics FunctionalGroupType Mandatory

HasProperty Variable DeviceID UInt32 PropertyType Mandatory

HasProperty Variable ProductID String PropertyType Optional

HasProperty Variable ProductText String PropertyType Optional

HasProperty Variable RevisionID String PropertyType Optional

HasProperty Variable VendorID UInt16 PropertyType Optional

HasProperty Variable VendorURL String PropertyType Optional

HasProperty Variable IOLinkStackRevision String PropertyType Optional

HasProperty Variable MasterConfigurationDisabled Boolean PropertyType Mandatory

HasComponent Object Port<n> IOLinkPortType Mandatory-
Placeholder

HasComponent Object Alarms FolderType Optional

GeneratesEvent ObjectType IOLinkMasterEventType Defined in 9.6.

GeneratesEvent ObjectType IOLinkMasterAlarmType Defined in 9.11.

The IOLinkMasterType ObjectType is a concrete type and can be used directly. Vendors may
create subtypes of the IOLinkMasterType to add vendor-specific extensions.

The ObjectType inherits the following InstanceDeclarations directly or indirectly from the
TopologyElementType defined in OPC UA Part 100.

• The optional Object ParameterSet is used to reference all Parameters and shall be
provided. Therefore, the ObjectType overrides the Object and changes the
ModellingRule to Mandatory.

• The optional Object MethodSet is used to reference all Methods and shall be provided.
Therefore, the ObjectType overrides the Object and changes the ModellingRule to
Mandatory.

• The optional Object Identification shall be provided and shall reference the Parameters
defined in Table 24. Those Parameters together uniquely identify the IO-Link Master
(see OPC UA Part 100 for details). Therefore, the ObjectType overrides the Object and
changes the ModellingRule to Mandatory.

OPC UA for IO-Link 55 Release 1.0

Table 24 – References of Identification Object

References BrowseName Comment

Organizes DeviceID Variable defined in Table 23.

Organizes VendorID Variable defined in Table 23.

Organizes ApplicationSpecificTag Variable defined in Table 28.

Organizes FunctionTag Variable defined in Table 28.

Organizes LocationTag Variable defined in Table 28.

Organizes MasterType Variable defined in Table 28.

• The Object <GroupIdentifier> has the ModellingRule OptionalPlaceholder and is
intended to group the Parameters. It is already used in this ObjectType by adding the
Objects Capabilities, Management and Statistics. Vendors may add vendor-specific
Objects to group additional Parameters.

• The optional Object Lock can be supported by a server to provide locking capabilities
(see OPC UA Part 100 for details). This is intended to prevent different clients and users
to configure an IO-Link Master at the same time. Locking an IOLinkMasterType Object
includes locking all its ports and the IOLinkDeviceType Objects connected to the ports.

The ObjectType defines additional InstanceDeclarations:

• The mandatory Object Capabilities shall reference the Parameters defined in Table 25.
Servers may add vendor-specific Parameters or Methods to this Object.

Table 25 – References of Capabilities Object

References BrowseName Comment

Organizes MaxNumberOfPorts Variable defined in Table 28.

Organizes MaxPowerSupply Variable defined in Table 28.

• The mandatory Object Management shall reference the Methods defined in Table 26.
Servers may add vendor-specific Parameters or Methods to the Object.

Table 26 – References of Management Object

References BrowseName Comment

Organizes Restart Method defined in Table 30.

• The mandatory Object Statistics shall reference the Parameters and Methods defined in
Table 26. Servers may add vendor-specific Parameters or Methods to the Object.

Table 27 – References of Statistics Object

References BrowseName Comment

Organizes ResetStatisticsOnAllPorts Method defined in Table 30.

Organizes NumberOfIOLinkMasterStarts Variable defined in Table 28.

Organizes DateOfLastStatisticsReset Variable defined in Table 28.

• The mandatory, read-only Variable DeviceID shall be mapped to MasterID of the
MasterIdent structure defined in the SMI (see IO-Link Addendum). The value (three
bytes) shall be mapped to an UInt32, using Big Endian.

• The optional, read-only Variable ProductID provides a vendor-specific product or type
identification like the ProductID of the IOLinkDeviceType. The implementation is vendor-
specific.

Release 1.0 56 OPC UA for IO-Link

• The optional, read-only Variable ProductText provides additional, vendor-specific
product information like the ProductText of the IOLinkDeviceType. The implementation
is vendor-specific.

• The optional, read-only Variable RevisionID contains the IO-Link protocol version
supported by the IO-Link Master, like the RevisionID of the IOLinkDeviceType. The
same rules as defined for RevisionID in IOLinkDeviceType apply (see section 7.1).

• The optional, read-only Variable VendorID of type UInt16 shall be mapped to VendorID
of the MasterIdent structure defined in the SMI (see IO-Link Addendum), using the same
type.

• The optional Variable VendorURL provides a link to the website of the vendor of the IO-
Link Master. The implementation is vendor-specific.

• The optional read-only Variable IOLinkStackRevision provides the revision of the IO-
Link stack implementation used by the IO-Link Master. The implementation is vendor-
specific.

• The mandatory Variable MasterConfigurationDisabled indicates whether configuration
changes are allowed via OPC UA. If set to “True”, nearly all configuration settings
become read-only and cannot be changed via OPC UA anymore. The Variable setting
is vendor-specific, including whether it can be changed via OPC UA. For example, if a
fieldbus is currently active on the IO-Link Master, a server might set this Variable to
“True”.

That includes in detail following rules:

o The Method Restart of the IO-Link Master becomes not executable.

o For all Ports of the IO-Link Master the Method UpdateConfiguration becomes not
executable.

o For all Ethernet configurations connected to the Fieldbus the configuration
becomes read-only.

The Method ResetStatistics on the Port and ResetStatisticsOnAllPorts on the IO -Link
Master shall still be executable.

There is no direct relation between the MasterConfigurationDisabled Variable and the
Lock Object. The Lock Objects prevents different OPC UA Clients to configure the IO -
Link Master at the same time whereas the MasterConfigurationDisabled Variable
indicates that the IO-Link Master is in a state within it cannot be configured by any OPC
UA Client. When the MasterConfigurationDisabled Variable is set to “True” Servers may
prevent the usage of the Lock Object for all Clients.

• The Port<n> Object of ModellingRule MandatoryPlaceholder represents the por ts of the
IO-Link Master. For each port of the IO-Link Master one Object of type IOLinkPortType
shall be provided, where <n> represents the number of the port. For example, a master
having two ports has the Objects Port1 and Port2. How the counting starts (e.g. Port0
or Port1) is vendor-specific.

• The optional Alarms Object is used to group all alarms of the instance, in case the server
supports representing the alarms as Objects in the AddressSpace. If the server does
not support this, the Object shall not be provided.

OPC UA for IO-Link 57 Release 1.0

7.5.3 Variables of ParameterSet

In Table 28, the Parameters of the ObjectType, referenced via the ParameterSet Object, are
defined.

Table 28 – ParameterSet of IOLinkMasterType

References Node Class BrowseName DataType TypeDefinition Modelling Rule

The following Parameters are also referenced by the Capabilities Object

HasComponent Variable MaxNumberOfPorts Byte BaseDataVariableType Mandatory

HasComponent Variable MaxPowerSupply Double BaseDataVariableType Mandatory

The following Parameters are also referenced by the Identification Object

HasComponent Variable ApplicationSpecificTag String BaseDataVariableType Mandatory

HasComponent Variable FunctionTag String BaseDataVariableType Mandatory

HasComponent Variable LocationTag String BaseDataVariableType Mandatory

HasProperty Variable MasterType Byte MultiStateDiscreteType Mandatory

The following Parameters are also referenced by the Statistics Object

HasComponent Variable DateOfLastStatisticsReset DateTime BaseDataVariableType Optional

HasComponent Variable NumberOfIOLinkMasterStarts UInt32 BaseDataVariableType Optional

The mandatory, read-only Variable MaxNumberOfPorts shall be mapped to MaxNumberOfPorts
of the MasterIdent structure defined in the SMI interface (see IO-Link Addendum).

The mandatory, read-only Variable MaxPowerSupply shall provide the overall amount of power
provided together on all ports of the IO-Link Master in ampere. For example, a 4-port IO-Link
Master may provide max. 2 A on each port but an overall MaxPowerSupply of 6 A, so not each
port can consume 2 A at the same time. The Variable shall provide the EngineeringUnits
Property defined in OPC UA Part 3, having the value set to {namespaceUri =
“http://www.opcfoundation.org/UA/units/un/cefact”; unitId = 427 632 ; displayName = {“en”,"A"};
description = {“en”, "ampere"}} (for ampere) . The Property shall be read-only and have the
ModellingRule Mandatory, so it is reflected on all instances .

The mandatory, writeable Variable ApplicationSpecificTag provides the same information as the
ApplicationSpecificTag defined for an IO-Link Device on the IO-Link Master level. The server
shall manage the value in a persistent manner. If a fieldbus mapping of the IO -Link Master
exists providing the same information, consistency shall be provided by the OPC UA Server.

The mandatory, writeable Variable FunctionTag provides the same information as the
FunctionTag defined on an IO-Link Device on the IO-Link Master level. The server shall manage
the value in a persistent manner. If a fieldbus mapping of the IO-Link Master exists providing
the same information, consistency shall be provided by the OPC UA Server.

The mandatory, writeable Variable LocationTag provides the same information as the
LocationTag defined for an IO-Link Device on the IO-Link Master level. The server shall manage
the value in a persistent manner. If a fieldbus mapping of the IO-Link Master exists providing
the same information, consistency shall be provided by the OPC UA Server.

The mandatory, read-only Variable MasterType shall be mapped to MasterType of the
MasterIdent structure defined in the SMI (see IO-Link Addendum). The Unsigned8 is mapped
directly to the DataType Byte. The Variable is of VariableType MultiStateDiscreteType defined
in OPC UA Part 8. The mandatory Property EnumStrings of the VariableType, which is an array
of LocalizedText, shall contain the content as defined in Table 29.

Release 1.0 58 OPC UA for IO-Link

Table 29 – Defined elements of EnumStrings array of MasterType Variable

Element number (starting with 0) Message (for locale “en”)

0 Unspecific

1 Master acc. V1.0

2 Master acc. V1.1

Servers are allowed to add additional entries into the EnumStrings array. Servers may provide
translations of the texts in different locales.

The optional, read-only Variable DateOfLastStatisticsReset contains the timestamp of the
answer to the last call of the Method ResetStatisticsOnAllPorts. The timestamp information shall
be as precise as possible. If the ResetStatisticsOnAllPorts Method was never called then
DateOfLastStatisticsReset indicates the startup time. The optional Variable shall be provided
when the optional Method ResetStatisticsOnAllPorts is provided.

The following Variable indicates the incidents since DateOfLastStatisticsReset. The server
should persist statistics, also when the IO-Link Master or the OPC UA Server is restarted.
However, if the statistics become inconsistent, the server is allowed to do an internal reset. This
will result in the update of DateOfLastStatisticsReset. If the value of a counting Var iable
becomes larger than the maximum value of the DataType, the value shall remain on the
maximum value.

The optional, read-only Variable NumberOfIOLinkMasterStarts indicates how often the IO-Link
Master was started since DateOfLastStatisticsReset. This includes starts on power up as well
as warm starts and restarts due to errors. This variable is reset with the Method
ResetStatisticsOnAllPorts to 0. When the IO-Link Master starts for the very first time, the value
is 1 as it has started once.

7.5.4 Methods of MethodSet

In Table 30, the Methods of the ObjectType, referenced via the MethodSet Object are defined.

Table 30 – MethodSet of IOLinkMasterType

References Node Class BrowseName Modelling Rule

The following Methods are also referenced by the Management Object

HasComponent Method Restart Mandatory

The following Methods are also referenced by the Statistics Object

HasComponent Method ResetStatisticsOnAllPorts Optional

7.5.4.1 Restart

The Method Restart restarts the IO-Link Master.

Signature

Restart (

 [in] Duration Delay,

 [out] Int32 Status

);

Argument Description

Delay Time before the restart becomes effective.

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running

-2: Operation cannot be executed

-3: Operation cannot be executed because master reconfiguration is disabled.

OPC UA for IO-Link 59 Release 1.0

7.5.4.2 ResetStatisticsOnAllPorts

The optional Method ResetStatisticsOnAllPorts resets all statistic data, including statistic data
of the ports of the IO-Link Master. Statistic data of a port are all Parameters referenced by the
Statistics Object of the IOLinkPortType Object starting with “NumberOf” and potentially vendor-
specific extensions. Statistic data directly on the IO-Link Master includes the Variable
NumberOfIOLinkMasterStarts and potential vendor-specific extensions. As soon as statistic
data is provided by the server, the optional Method shall be provided.

Signature

ResetStatisticsOnAllPorts (

 [out] Int32 Status

);

Argument Description

Delay Time before the reset becomes effective.

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running

-2: Operation cannot be executed.

7.6 IOLinkPortType ObjectType Definition

7.6.1 Example

In Figure 25 an example of an instance of the IOLinkPortType is shown, using only the
mandatory InstanceDeclarations, in order to give an overview on the ObjectType. The Object
does not have Properties, its Parameters are connected via the ParameterSet, Methods via the
MethodSet and both organized via different FunctionalGroups (Capabilities, Statistics,
SIOProcessData, Configuration (containing another FunctionalGroup ConfiguredDevice), and
Information). Note that SIOProcessData only points to opt ional Parameters not used in this
example.

Release 1.0 60 OPC UA for IO-Link

ExampleIOLinkPort

Capabilities

PortClass

MaxPowerSupply

Pin2Support

PortMode

ValidationAndBackup

Information

CycleTime

Baudrate

ResetStatistics

IoLinkDeviceType

Device

ParameterSet

MethodSet

Pin2Configuration

Statistics

DateOfLastStatisticsReset

NumberOfCycles

SIOProcessData

optional, shown without device details

Configuration

ConfiguredDevice

VendorID

SerialNumber

DeviceID

ActualCycleTime

NumberOfRetries

NumberOfAborts

NumberOfDeviceHasBeenExchanged

Status

UpdateConfiguration

points only to optional parameters

EnumStrings

EngineeringUnits

EnumStrings

EnumStrings

EnumStrings

EnumStrings

DeviceConfigurationDisabled

UseIODD

EnumStrings

Quality

EnumStrings

Figure 25 – Example instance of IOLinkPortType (only mandatory InstanceDeclarations)

OPC UA for IO-Link 61 Release 1.0

7.6.2 Overview

The IOLinkPortType provides information of one port of an IO-Link Master and is formally
defined in Table 8.

Table 31 – IOLinkPortType Definition

Attribute Value

BrowseName IOLinkPortType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of TopologyElementType defined in OPC UA Part 100.

HasComponent Object 2:ParameterSet BaseObjectType Mandatory

HasComponent Object 2:MethodSet BaseObjectType Mandatory

HasProperty Variable DeviceConfigurationDisabled Boolean PropertyType Mandatory

HasComponent Object Capabilities FunctionalGroupType Mandatory

HasComponent Object Information FunctionalGroupType Mandatory

HasComponent Object Statistics FunctionalGroupType Mandatory

HasComponent Object Configuration FunctionalGroupType Mandatory

HasComponent Object SIOProcessData FunctionalGroupType Mandatory

HasComponent Object Device IOLinkDeviceType Optional

HasComponent Object Alarms FolderType Optional

GeneratesEvent ObjectType IOLinkPortEventType Defined in 9.5.

GeneratesEvent ObjectType IOLinkPortAlarmType Defined in 9.10

The IOLinkPortType ObjectType is a concrete type and can be used directly. Vendors may
create subtypes of the IOLinkPortType to add vendor-specific extensions.

The ObjectType inherits the following InstanceDeclarations directly or indirectly from the
TopologyElementType defined in OPC UA Part 100.

• The optional Object ParameterSet is used to reference all Parameters and shall be
provided. Therefore, the ObjectType overrides the Object and changes its
ModellingRule to Mandatory.

• The optional Object MethodSet is used to reference all Methods and shall be provided.
Therefore, the ObjectType overrides the Object and changes its ModellingRule to
Mandatory.

• The optional Object Identification is not used in this ObjectType.

• The Object <GroupIdentifier> has the ModellingRule OptionalPlaceholder and is
intended to group the Parameters. It is already used in this ObjectType by adding
various FunctionalGroupType Objects. Vendors may add vendor-specific Objects to
group additional Parameters.

• The optional Object Lock can be supported by a server to provide locking capabilities
(see OPC UA Part 100 for details). This is intended to prevent different clients and use rs
to configure an IO-Link Master at the same time. Locking the Port also locks the
connected IO-Link Device.

The ObjectType defines additional InstanceDeclarations:

• The mandatory Variable DeviceConfigurationDisabled indicates whether configuration
changes of the connected IO-Link Device (Device Object) are allowed via OPC UA. If

Release 1.0 62 OPC UA for IO-Link

set to “True”, nearly all configuration settings become read -only and cannot be changed
via OPC UA anymore. The Variable setting is vendor-specific, including whether it can
be changed via OPC UA. For example, if a fieldbus is currently active on the IO -Link
Master, a server might set this Variable to “True” on all its ports.

That includes in detail following rules:

o For the IO-Link Device connected to the IO-Link Port (Device Object) all
Parameters become read-only.

o For the IO-Link Device connected to the IO-Link Port (Device Object) all Methods
defined in the IOLinkDeviceType except ReadISDU become not executable.

o For the IO-Link Device connected to the IO-Link Port (Device Object) all Methods
created based on the IODD become not executable unless the Methods only
trigger the reading of ISDUs.

The Method ResetStatistics on the IO-Link Port and ResetStatisticsOnAllPorts on the
IO-Link Master shall still be executable.

There is no direct relation between the DeviceConfigurationDisabled Variable and the
Lock Object on the IOLinkDeviceType. The Lock Object prevents different OPC UA
Clients to configure the IO-Link Device at the same time whereas the
DeviceConfigurationDisabled Variable indicates that the IO-Link Master is in a state that
does not allow the IO-Link Device to be configured by any OPC UA Client. When the
DeviceConfigurationDisabled Variable is set to “True” Servers may prevent the usage
of the Lock Object for all Clients.

• The mandatory Object Capabilities shall reference the Parameters defined in Table 32.
Servers may add vendor-specific Parameters to the Object.

Table 32 – References of Capabilities Object

References BrowseName Comment

Organizes PortClass Variable defined in Table 38.

Organizes MaxPowerSupply Variable defined in Table 38.

Organizes Pin2Support Variable defined in Table 38.

• The mandatory Object Configuration shall reference the Parameters and Methods
defined in Table 33. Servers may add vendor-specific Parameters and Methods to the
Object.

Table 33 – References of Configuration Object

References BrowseName Comment

Organizes CycleTime Variable defined in Table 38.

Organizes ValidationAndBackup Variable defined in Table 38.

Organizes PortMode Variable defined in Table 38.

Organizes Pin2Configuration Variable defined in Table 38.

Organizes UseIODD Variable defined in Table 38.

Organizes ConfiguredDevice Object of type FunctionalGroupType with ModellingRule Mandatory, its
references are defined in Table 34.

Organizes UpdateConfiguration Method defined in Table 43.

• The mandatory Object ConfiguredDevice of the Configuration Object shall reference the
Parameters defined in Table 34. Servers may add vendor-specific Parameters to the
Object.

OPC UA for IO-Link 63 Release 1.0

Table 34 – References of ConfiguredDevice Object

References BrowseName Comment

Organizes DeviceID Variable defined in Table 38.

Organizes VendorID Variable defined in Table 38.

• The mandatory Object Information shall reference the Parameters defined in Table 35.
Servers may add vendor-specific Parameters to the Object.

Table 35 – References of Information Object

References BrowseName Comment

Organizes Baudrate Variable defined in Table 38.

Organizes ActualCycleTime Variable defined in Table 38.

Organizes Quality Variable defined in Table 38.

Organizes Status Variable defined in Table 38.

• The mandatory Object SIOProcessData shall reference the Parameters defined in Table
36. Servers may add vendor-specific Parameters to the Object.

Table 36 – References of SIOProcessData Object

References BrowseName Comment

Organizes Pin2ProcessData Variable defined in Table 38.

Organizes Pin4ProcessData Variable defined in Table 38.

• The mandatory Object Statistics shall reference the Parameters defined in Table 37.
Servers may add vendor-specific Parameters to the Object.

Table 37 – References of Statistics Object

References BrowseName Comment

Organizes DateOfLastStatisticsReset Variable defined in Table 38.

Organizes NumberOfAborts Variable defined in Table 38.

Organizes NumberOfCycles Variable defined in Table 38.

Organizes NumberOfDeviceHasBeenExchanged Variable defined in Table 38.

Organizes NumberOfRetries Variable defined in Table 38.

Organizes ResetStatistics Method defined in Table 43.

• The optional Alarms Object is used to group all alarms of the instance, in case the server
supports representing the alarms as Objects in the AddressSpace. If the server does
not support this, the Object shall not be provided.

7.6.3 Variables of ParameterSet

In Table 38, the Parameters of the ObjectType, referenced via the ParameterSet Object, are
defined.

Release 1.0 64 OPC UA for IO-Link

Table 38 – ParameterSet of IOLinkPortType

References Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

The following Parameters are also referenced by the Capabilities Object

HasComponent Variable PortClass Byte MultiStateDiscreteType Mandatory

HasComponent Variable MaxPowerSupply Double BaseDataVariableType Mandatory

HasComponent Variable Pin2Support Boolean BaseDataVariableType Mandatory

The following Parameters are also referenced by the Configuration Object

HasComponent Variable CycleTime Duration BaseDataVariableType Mandatory

HasComponent Variable ValidationAndBackup Byte MultiStateDiscreteType Mandatory

HasComponent Variable PortMode Byte MultiStateDiscreteType Mandatory

HasComponent Variable Pin2Configuration Byte MultiStateDiscreteType Mandatory

HasComponent Variable UseIODD Boolean BaseDataVariableType Mandatory

The following Parameters are also referenced by the ConfiguredDevice Object, which is part of the Configuration Object

HasComponent Variable DeviceID UInt32 BaseDataVariableType Mandatory

HasComponent Variable VendorID UInt16 BaseDataVariableType Mandatory

The following Parameters are also referenced by the Information Object

HasComponent Variable Baudrate Byte MultiStateDiscreteType Mandatory

HasComponent Variable ActualCycleTime Duration BaseDataVariableType Mandatory

HasComponent Variable Quality Byte OptionSetType Mandatory

HasComponent Variable Status Byte MultiStateDiscreteType Mandatory

The following Parameters are also referenced by the SIOProcessData Object

HasComponent Variable Pin2ProcessData BaseDataType BaseDataVariableType Optional

HasComponent Variable Pin4ProcessData Boolean BaseDataVariableType Optional

The following Parameters are also referenced by the Statistics Object

HasComponent Variable DateOfLastStatisticsReset DateTime BaseDataVariableType Optional

HasComponent Variable NumberOfAborts UInt32 BaseDataVariableType Optional

HasComponent Variable NumberOfCycles UInt32 BaseDataVariableType Optional

HasComponent Variable NumberOfDevice-
HasBeenExchanged

UInt32 BaseDataVariableType Optional

HasComponent Variable NumberOfRetries UInt32 BaseDataVariableType Optional

The mandatory, read-only Variable PortClass shall be mapped to the corresponding entry in
PortTypes of the MasterIdent structure defined in the SMI (see IO-Link Addendum). The
Unsigned8 is mapped directly to the DataType Byte. The Variable is of VariableType
MultiStateDiscreteType defined in OPC UA Part 8. The mandatory Property EnumStrings of the
VariableType, which is an array of LocalizedText, shall contain the following content, defined in
Table 39.

Table 39 – Defined elements of EnumStrings array of PortClass Variable

Element number (starting with 0) Message (for locale “en”)

0 CLASS A

1 “” (= Empty String)

2 CLASS B

Servers are only allowed to add additional entries into the EnumStrings array according to the
IO-Link Addendum or updates to the IO-Link Specification, also updating element number 1
once it is defined. Servers may provide translations of the texts in different locales.

The mandatory, read-only Variable MaxPowerSupply shall provide the maximum amount of
power provided on the port. The Variable shall provide the EngineeringUnits Property defined
in OPC UA Part 3, having the value set to {namespaceUri =
“http://www.opcfoundation.org/UA/units/un/cefact”; unitId = 427 632 ; displayName = {“en”,"A"};
description = {“en”, "ampere"}} (for ampere). The Property shall be read-only and have the
ModellingRule Mandatory, so it is reflected on all instances. Note that the IOLinkMasterType

OPC UA for IO-Link 65 Release 1.0

also provides a MaxPowerSupply and potentially not all ports can consume the
MaxPowerSupply at the same time.

The mandatory, read-only Variable Pin2Support indicates whether the port does support Pin2
at all. “False” means it is not supported, “True” means it can be supported. If it is supported,
the Parameter Pin2Configuration can be used to configure how to use it and in case it is used
to read or write values the Parameter Pin2ProcessData can be used to access the value.

All Variables provided directly under the Configuration Object are read-only. To change the
configuration, the UpdateConfiguration Method defined in Table 43 needs to be executed. The
Method call ensures that all configuration data is provided at once by the client in a consistent
state.

The mandatory, read-only Variable CycleTime shall be mapped to the PortCycleTime of the
PortConfigList structure defined in the SMI (see IO-Link Addendum). The data type mapping is
defined in 12.2.7.2, having “0” as special meaning for “as fast as possible”.

The mandatory, read-only Variable ValidationAndBackup shall be mapped to
“Validation&Backup” of the PortConfigList structure defined in the SMI (see IO-Link Addendum).
The Unsigned8 is mapped directly to the Byte DataType. The Variable is of VariableType
MultiStateDiscreteType defined in OPC UA Part 8. The mandatory Property EnumStrings of the
VariableType, which is an array of LocalizedText, shall contain for locale “en” exactly the text
as defined in the SMI. Servers are not allowed to add additional entries into the EnumStrings
array, only based on updates of the IO-Link Specification. Servers may provide translations of
the texts in different locales.

The mandatory, read-only Variable PortMode shall be mapped to PortMode of the PortConfigList
structure defined in the SMI (see IO-Link Addendum). The Unsigned8 is mapped directly to the
DataType Byte. The Variable is of VariableType MultiStateDiscreteType defined in OPC UA
Part 8. The mandatory Property EnumStrings of the VariableType, which is an array of
LocalizedText, shall contain the following content, defined in Table 40.

Table 40 – Defined elements of EnumStrings array of PortMode Variable

Element number (starting with 0) Message (for locale “en”)

0 DEACTIVATED

1 IOL_MANUAL

2 IOL_AUTOSTART

3 DI_C/Q (Pin4)

4 DO_C/Q (Pin4)

Servers are allowed to add additional entries into the EnumStrings array. Servers may provide
translations of the texts in different locales.

The mandatory, read-only Variable Pin2Configuration shall be mapped to “I/Q behaviour” of the
PortConfigList structure defined in the SMI (see IO-Link Addendum). The Unsigned8 is mapped
directly to the Byte DataType. The Variable is of VariableType MultiStateDiscreteType defined
in OPC UA Part 8. The mandatory Property EnumStrings of the VariableType, which is an array
of LocalizedText, shall contain for locale “en” exactly the text as defined in the SMI. Servers
are not allowed to add additional entries into the EnumStrings array, only based on updates of
the IO-Link Specification. Servers may provide translations of the texts in different locales.

The mandatory, read-only Variable UseIODD defines whether the server shall use an IODD for
the connected IO-Link Device or not. Details on the selection process are defined in section
6.1.7.

The mandatory, read-only Variable DeviceID shall be mapped to DeviceID of the PortConfigList
structure defined in the SMI (see IO-Link Addendum), both of data type UInt32.

Release 1.0 66 OPC UA for IO-Link

The mandatory, read-only Variable VendorID shall be mapped to VendorID of the PortConfigList
structure defined in the SMI (see IO-Link Addendum), both of data type UInt16.

The mandatory, read-only Variable Baudrate shall be mapped to TransmissionRate of the
PortStatusList structure defined in the SMI (see IO-Link Addendum). The UInteger8 shall
directly be mapped to the Byte DataType. The EnumStrings Property of the
MultiStateDiscreteType shall be used according to the values defined for the TransmissionRate
in IO-Link Addendum, and shall at least provide all valid Values supported by the IO-Link
Master.

The mandatory, read-only Variable ActualCycleTime shall be mapped to the MasterCycleTime
of the PortStatusList structure defined in the SMI (see IO-Link Addendum). The data type
mapping is defined in 12.2.7.2.

The mandatory, read-only Variable Quality shall be mapped to “PortQualityInfo” of the
PortStatusList structure defined in the SMI (see IO-Link Addendum). The Unsigned8 is mapped
directly to the Byte DataType. The Variable is of VariableType OptionSetType defined in OPC
UA Part 5. The mandatory Property OptionSetValues of the VariableType, which is an array of
LocalizedText, shall contain the following content, defined in Table 41. Servers are not allowed
to add additional entries into the OptionSetValues array, only based on updates of the IO-Link
Specification. Servers may provide translations of the texts in different locales.

Table 41 – Defined elements of OptionSetValues array of Quality Variable

Element number (starting with 0) Text (for locale “en”)

0 PDIn invalid

1 PDOut invalid

The mandatory, read-only Variable Status shall be mapped to PortStatusInfo of the
PortStatusList structure defined in the SMI (see IO-Link Addendum). The Unsigned8 is mapped
directly to the Byte DataType. The Variable is of VariableType MultiStateDiscreteType defined
in OPC UA Part 8. The mandatory Property EnumStrings of the VariableType, which is an array
of LocalizedText, shall contain the following content, defined in Table 42.

Table 42 – Defined elements of EnumStrings array of Status Variable

Element number (starting with 0) Text (for locale “en”)

0 NO_DEVICE

1 DEACTIVATED

2 INCORRECT_DEVICE

3 PREOPERATE

4 OPERATE

5 DI_C/Q (Pin4)

6 DO_C/Q (Pin4)

7-253 “” (= Empty String)

254 PORT_FAULT

255 NOT_AVAILABLE

Servers may update the values for 7-253 when the IO-Link Specification gets updated. Servers
may provide translations of the texts in different locales.

The date since connection is running or not running is shown in SourceTimestamp of the Status.
Because of this a server that supports persistent statistics shall not change the
SourceTimestamp of Status on restart of the IO-Link Master or OPC UA Server.

The optional Variable Pin2ProcessData provides the process data value of the Pin2. The
DataType is vendor-specific.

OPC UA for IO-Link 67 Release 1.0

The optional Variable Pin4ProcessData provides the process data value of the Pin4. The
Variable shall only be provided when the PortMode is set to “DI_C/Q (Pin4)” or “DO_C/Q (Pin4)”.

The optional, read-only Variable DateOfLastStatisticsReset contains the timestamp of the
answer to the last call of the Method ResetStatistics, respectively ResetStatisticsOnAllPorts
defined on the IOLinkMasterType. The timestamp information shall be as precise as possible.
If the reset Methods were never called then DateOfLastStatisticsReset indicates the startup
time. The optional Variable shall be provided when the optional Method ResetStatistics is
provided.

The following Variables indicate the incidents since DateOfLastStatisticsReset. The server
should persist statistics, also when the IO-Link Master or the OPC UA Server is restarted.
However, if the statistics become inconsistent, the server is allowed to do an internal reset. This
will result in the update of DateOfLastStatisticsReset. If the value of a counting Variable
becomes larger than the maximum value of the DataType, the value shall remain on the
maximum value.

The optional, read-only Variable NumberOfCycles contains the number of IO-Link frames on
the wire since DateOfLastStatisticsReset. One cycle consists out of one request and response
pair.

There are several reasons for the case that an IO-Link Master cannot receive a valid response
of an IO-Link Device. It could be that electromagnetic interference (EMI) destroys a packet or
that the device is not communicating or that the device was plugged off. If a master cannot
receive a valid response, it sends the same frame once more (first retry) and if it gets no answer
to this repetition, it sends the frame a third time (second retry). If there is no answer to the
second retry, the communication is aborted.

The optional, read-only Variable NumberOfRetries contains the number of retries since
DateOfLastStatisticsReset.

The optional, read-only Variable NumberOfAborts contains the number of times the
communication was aborted since DateOfLastStatisticsReset.

The optional, read-only Variable NumberOfDeviceHasBeenExchanged contains the number of
times a device with different RevisionID, VendorID, DeviceID or SerialNumber has been plugged
in since DateOfLastStatisticsReset.

The SourceTimestamp of the counting Variables shall contain the time when the incident
occurred and shall not change on restart of the OPC UA Server. This allows Clients to figure
out when the variable changed the last time, e.g. when there was the last re try.

7.6.4 Methods of MethodSet

In Table 43, the Methods of the ObjectType, referenced via the MethodSet Object are defined.

Table 43 – MethodSet of IOLinkPortType

References Node Class BrowseName Modelling Rule

The following Methods are also referenced by the Statistics Object

HasComponent Method ResetStatistics Optional

The following Methods are also referenced by the Configuration Object

HasComponent Method UpdateConfiguration Mandatory

7.6.4.1 ResetStatistics

The optional Method ResetStatistics resets all statistic data of the ports. Statistic data of a port
are Parameters referenced by the Statistics Object of the IOLinkPortType Object starting with

Release 1.0 68 OPC UA for IO-Link

“NumberOf” and potentially vendor-specific extensions. As soon as statistic data is provided by
the server, the optional Method shall be provided.

Signature

ResetStatistics (

 [out] Int32 Status

);

Argument Description

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running

-2: Operation cannot be executed.

7.6.4.2 UpdateConfiguration

The Method UpdateConfiguration takes all configuration data as input and updates the
configuration of the port. The Method execution ensures that a client provides all configuration
data at the same time in a consistent way and thus the server can deploy the configuration in
one operation. If the configuration is not valid, the server returns a corresponding Status. As
defined in the SMI (see IO-Link Addendum) depending on the configuration some arguments
are treated as “don’t care”. For example, when the PortMode is IOL_AUTOSTART, the
DeviceID, VendorID and ValidationAndBackup are ignored. The server shall not check those
arguments and accept configurations with all possible values.

Signature

UpdateConfiguration (

 (

 [in] Duration CycleTime,

 [in] Byte ValidationAndBackup,

 [in] Byte PortMode,

 [in] Byte Pin2Configuration,

 [in] Boolean UseIODD,

 [in] UInt32 DeviceID,

 [in] UInt16 VendorID,

 [out] Int32 Status

);

Argument Description

CycleTime Maps to CycleTime Variable defined in Table 38.

ValidationAndBackup Maps to ValidationAndBackup Variable defined in Table 38. Only the numeric values
defined for the Variable are allowed.

PortMode Maps to PortMode Variable defined in Table 38. Only the numeric values defined for the
Variable are allowed.

Pin2Configuration Maps to Pin2Configuration Variable defined in Table 38. Only the numeric values
defined for the Variable are allowed.

UseIODD Maps to UseIODD Variable defined in Table 38.

DeviceID Maps to DeviceID Variable defined in Table 38.

VendorID Maps to VendorID Variable defined in Table 38.

Status Returns the status of the operation.

 0: OK, operation successful

-1: Operation already running

-2: Operation cannot be executed

-3: Invalid configuration

OPC UA for IO-Link 69 Release 1.0

7.7 DeviceVariantType

The DeviceVariantType provides information of a specific IO-Link Device variant as defined in
the IODD. It is formally defined in Table 44.

Table 44 – DeviceVariantType Definition

Attribute Value

BrowseName DeviceVariantType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of BaseObjectType defined in OPC UA Part 5.

HasProperty Variable ProductId String PropertyType Mandatory

HasProperty Variable Name LocalizedText PropertyType Mandatory

HasProperty Variable Description LocalizedText PropertyType Mandatory

HasComponent Variable DeviceSymbol Image BaseDataVariableType Optional

HasComponent Variable DeviceIcon Image BaseDataVariableType Optional

An instance of DeviceVariantType maps to an IODD DeviceVariant.

The mandatory, read-only Property ProductId maps to the IODD DeviceVariant/@productId
attribute.

The mandatory, read-only Property Name maps to the IODD DeviceVariant/Name element.
Localization should be considered. For IODDs following the IODD Specification Version 1.0.1
the IODD DeviceVariant/ProductName element shall be used. Localization should be
considered.

The mandatory, read-only Property Description maps to the IODD DeviceVariant/ Description.
Localization should be considered. For IODDs following the IODD Specification Version 1.0.1
the IODD DeviceVariant/ProductText element shall be used. Localization should be considered.

The optional, read-only Variable DeviceSymbol maps to the IODD
DeviceVariant/@deviceSymbol attribute. The defined path to an image in deviceSymbol shall
be resolved and the file shall be provided as Image.

The optional, read-only Variable DeviceIcon maps to the IODD DeviceVariant/@deviceIcon
attribute. The defined path to an image in deviceIcon shall be resolved and the file shall be
provided as Image.

8 OPC UA Objects, Variables and Methods

8.1 General

This section defines Objects, Variables and Methods with NodeIds defined in this specification.
Clients can directly use those NodeIds to access the instances, and use the functionality.

8.2 IODDManagement Object

The IODDManagement Object is used to manage IODDs. It contains Methods to load IODDs
into the server and to remove IODDs. An example of an AddressSpace containing the
IODDManagement Object and several IODD-based ObjectTypes is shown in Figure 26.

Release 1.0 70 OPC UA for IO-Link

IODDManagement

RemoveIODD

TemporaryFileTransferType

TransferIODD

FolderType

IODDs

IODD specific Type A

IODD specific Type B

IODD specific Type <n>

...

Organizes

Figure 26 – Example AddressSpace containing the IODDManagement Object

The IODDManagement Object is formally defined in Table 45. The IODDManagement Object
shall be referenced from the Objects Object defined in OPC UA Part 5 with an Organizes
Reference.

Table 45 – IODDManagement Definition

Attribute Value

BrowseName IODDManagement

References NodeClass BrowseName TypeDefinition Comment

HasTypeDefinition ObjectType FolderType Defined in OPC UA Part 5.

HasComponent Method RemoveIODD Defined in 8.3

HasComponent Object TransferIODD TemporaryFileTransferType Defined in OPC UA Part 5.

Organizes Object IODDs FolderType

The TransferIODD Object is used for a temporary file transfer (see OPC UA Part 5 for details
on the TemporaryFileTransferType). It is used to load new IODDs into the server, and,
optionally, to read IODDs managed in the server.

The IODD provided by a vendor can consist of several files, providing the main XML-based file
as well as optionally language files and images referenced in the main file (see IODD
Specification). For loading and reading IODDs those files shall always be zipped into one file,
representing the full IODD information of the device.

To load an IODD into the server, a new temporary file shall be created using the
GenerateFileForWrite Method (defined in OPC UA Part 5 as part of the
TemporaryFileTransferType). The generateOptions argument of the Method shall be left as
BaseDataType, meaning the Client shall pass a Null for that argument. After the file is written
to the server, the Client shall call the CloseAndCommit Method (defined OPC UA Part 5).
Depending on the server implementation, the result of the operation is either directly returned
in the Method call or via a state machine (see OPC UA Part 5 for details).

The following rules for loading IODDs apply:

OPC UA for IO-Link 71 Release 1.0

- Servers shall reject IODDs they cannot interpret (e.g. using an unsupported version or
invalid XML).

- Server may reject an IODD if the checksum is invalid (see IODD Specification for
details).

- If the IODD to be loaded is already managed in the server (same DeviceID and
VendorID).

o The server may reject the loading operation if the IODD is used (there is an
Instance of the ObjectType in the AddressSpace).

o If the server loads the IODD it shall remove the previous version of the IODD
(meaning removing the ObjectType) and assign potential Instances to the new
ObjectType). In that case, the NodeIds of the Instances, including all Instances
derived from InstanceDeclarations, shall not change.

- If the server cannot manage the IODD due to limited resources it shall reject the loading.

Rejecting an IODD after calling the CloseAndCommit Method means that either the
CloseAndCommit call directly returns a bad code or the returned completionStateMachine ends
in the Error State (see OPC UA Part 5 for details).

Note that the successful loading of an IODD typically leads to creating a corresponding
ObjectType in this server. This is the recommended behaviour. However, it is allowed that
servers do not create such an ObjectType before the ObjectType is used (e .g. by connecting a
corresponding IO-Link Device to the IO-Link Master) due to limited resources of the server.

The server may also provide the capability to read an IODD managed by the server. In this
case, the GenerateFileForRead Method (defined OPC UA Part 5 as part of the
TemporaryFileTransferType) is used to create a temporary file. This Method is mandatory on
the TemporaryFileTransferType. If the server does not support reading an IODD the Executable
Attribute of the Method shall be set to “False”. The generateOptions argument of the
GenerateFileForRead Method shall be set to NodeId. The Client shall provide the NodeId of the
ObjectType representing the IODD to create a temporary file for that IODD. Depending on the
server implementation, the result of the operation is either directly returned in the Method call
or via a state machine (see OPC UA Part 5 for details). If the server supports this operation, a
zipped file like for loading an IODD is returned.

The IODDs Object is used to group all ObjectTypes representing IODDs managed in the server.
It shall reference all those ObjectTypes directly with an Organizes Reference.

8.3 RemoveIODD Method

The Method RemoveIODD removes an IODD from the server and is used by the
IODDManagement Object (see 8.2).

The following rules for deleting IODDs apply:

- If the IODD is used (meaning there is an instance of the ObjectType in the AddressSpace
of the Server) and the force flag is set to “False” the operation shall fail. Clients need to
remove the usage of the IODD first before it can be deleted.

- If the IODD is used (meaning there is an instance of the ObjectType in the AddressSpace
of the Server) and the force flag is set to “True” the operation shall succeed and remove
all instances of the corresponding ObjectType in the AddressSpace.

Release 1.0 72 OPC UA for IO-Link

Signature

RemoveIODD (

 [in] NodeId IODD,

 [in] Boolean Force,

 [out] Int32 Status

);

Argument Description

IODD NodeId of the ObjectType representing an IODD description. The Node shall be
referenced by the IODDs Object with an Organizes Reference.

Force If “True”: Force the immediate deletion of instances of the ObjectType in the
AddressSpace.

Status Returns the status of the operation.

 0: OK, operation successful

-1: NodeId invalid for this operation – no NodeId of an IODD representation

-2: IODD in use and cannot be deleted

Method Result Codes (defined in Call Service)

Result Code Description

Bad_UserAccessDenied See OPC UA Part 4 for a general description.

8.4 IOLinkMasterSet Object

The IOLinkMasterSet Object is referencing all Objects of IOLinkMasterType managed in the
Server with an Organizes Reference (see Figure 9). It is formally defined in Table 46. The
IOLinkMasterSet Object shall be referenced from the Objects Object defined in OPC UA Part 5
with an Organizes Reference.

Since later versions of this specification might change the parent of this Object, Clients aware
of this standardized Object shall not access it via its parent but directly via its standardized
NodeId.

Table 46 – IOLinkMasterSet Definition

Attribute Value

BrowseName IOLinkMasterSet

References NodeClass BrowseName TypeDefinition Comment

HasTypeDefinition ObjectType FolderType Defined in OPC UA Part 5.

9 OPC UA EventTypes

9.1 General

The IOLinkEventType defines the base structure for all EventTypes providing simple Events
(Notifications) defined in this specification. Subtypes are defined to distinguish between events
originating from IO-Link Device, IO-Link Masters and ports of the IO-Link Masters.

The IOLinkAlarmType defines the base structure for all EventTypes providing alarms (Errors
and Warnings) defined in this specification. Subtypes are defined to distinguish between alarms
originating from IO-Link Device, IO-Link Masters and ports of the IO-Link Masters.

OPC UA for IO-Link 73 Release 1.0

9.2 IOLinkEventType

The IOLinkEventType is the base EventType for Events generated from IO-Link Devices or IO-
Link Masters. It is formally defined in Table 47.

Table 47 – IOLinkEventType Definition

Attribute Value

BrowseName IOLinkEventType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of BaseEventType defined in OPC UA Part 5.

HasSubtype ObjectType IOLinkDeviceEventType

HasSubtype ObjectType IOLinkPortEventType

HasSubtype ObjectType IOLinkMasterEventType

HasProperty Variable IOLinkEventCode UInt16 PropertyType Mandatory

The EventType inherits the Properties of the BaseEventType.

• The mandatory Property EventId is a vendor-specific unique identification of the Event.

• The mandatory Property EventType reflects the type of Event, so either the NodeId of
the IOLinkEventType or a subtype.

• The content of the Properties SourceNode, SourceName, Time, ReceiveTime, and
Message is defined by its subtypes.

• The optional Property LocalTime shall not be provided.

• The Property Severity reflects the mode of IO-Link events. The IOLinkEventType or
subtypes shall only be used for “Notification” and the severity shall be “200”.

The Property IOLinkEventCode is defined by the subtypes of the EventType.

9.3 IOLinkDeviceEventType

The IOLinkDeviceEventType is the base EventType for Events generated from IO-Link Devices.
It is formally defined in Table 48.

Table 48 – IOLinkDeviceEventType Definition

Attribute Value

BrowseName IOLinkDeviceEventType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of IOLinkEventType defined in section 9.2.

HasSubtype ObjectType IOLinkIODDDeviceEventType

The following rules for the inherited Properties apply.

• The mandatory Property SourceNode shall be the NodeId of the object representing the
IO-Link Device the event originates from.

• The mandatory Property SourceName shall be the string part of the BrowseName of the
Object representing the IO-Link Device the Event originates from.

Release 1.0 74 OPC UA for IO-Link

• The mandatory Property Time shall be the time the IO-Link Master receives the Event
from the IO-Link Device.

Note that the event might have been generated already at an earlier time (more than
communication delays) in the IO-Link Device, before it was received by the IO-Link
Master.

• The mandatory Property ReceiveTime shall be set to the time the OPC UA Server
receives the event. In case the OPC UA Server runs on the IO-Link Master, this might
be the same value as the value of Property Time.

• In case the IO-Link event code is not described in an IODD, the mandatory Property
Message shall be set to “IO-Link EventCode: 0x<xxxx>” for the English locale, where
xxxx is the event code as hexadecimal representation. For example, for event code
0x18FF the message shall be “IO-Link EventCode: 0x18FF”. The server may provide
different locales containing a translation of that string. In case the IO-Link Specification
defines a specific string (Table D.1 of IO-Link Specification) for a specific event code,
the server may also use that string instead of the generic message. For example, for
event code 0x4000 the string “Temperature fault – Overload” is defined and can be used
alternatively as Message.

• The mandatory Property IOLinkEventCode shall provide the two-octet event code of the
IO-Link Device as UInt16.

9.4 IOLinkIODDDeviceEventType

The IOLinkIODDDeviceEventType is the EventType for Events generated from IO-Link Devices
based on IODD information. It is formally defined in Table 49.

Table 49 – IOLinkIODDDeviceEventType Definition

Attribute Value

BrowseNam
e

IOLinkIODDDeviceEventType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of IOLinkDeviceEventType defined in section 9.3.

HasProperty Variable Name LocalizedText PropertyType Mandatory

The following rules for the inherited Properties apply.

• The mandatory Property Message shall be mapped to the corresponding IODD
Event/Description element. Localization should be considered. If the optional element
Description is not provided, the mandatory element Name shall be used.

The mandatory Property Name shall be mapped to the corresponding IODD Event/Name
element. Localization should be considered.

OPC UA for IO-Link 75 Release 1.0

9.5 IOLinkPortEventType

The IOLinkPortEventType represents Events triggered by a concrete port of an IO-Link Master.
It is formally defined in Table 48.

Table 50 – IOLinkPortEventType Definition

Attribute Value

BrowseName IOLinkPortEventType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Modelling Rule

Subtype of IOLinkEventType

The following rules for the inherited Properties apply.

• The mandatory Property SourceNode shall be the NodeId of the Object of
IOLinkPortType the event originates from.

• The mandatory Property SourceName shall start with the string part of the BrowseName
of the Object of IOLinkMasterType the IO-Link Port is connected to, followed by a “.”
and the string part of the BrowseName of the Object of IOLinkPortType the Event
originates from.

• The mandatory Property Time shall be the time the Event occurred on the IO-Link
Master.

• The mandatory Property ReceiveTime shall be set to the time the OPC UA Server
receives the event. In case the OPC UA Server runs on the IO-Link Master, this might
be the same value as the value of Property Time.

• The allowed IOLinkPortEvents are defined in IO-Link Addendum as port specific events.
The EventCode ID shall be mapped to the IOLinkEventCode. In case of a vendor-
specific EventCode ID the Message is vendor-specific. In case of all other EventCode
IDs the descriptive text of IO-Link Addendum shall be used as Message for locale “en”.
For EventCode IDs 0xFF21 to 0xFFFF no text is defined. For those, the following
Message texts defined in Table 51 shall be used for locale “en”. Servers may provide
translations for all Message texts in other languages.

Table 51 – Message texts for specific IOLinkEventCode values

IOLinkEventCode Message (for locale “en”)

0xFF21 New Device

0xFF22 Device not available – communication lost

0xFF23 Invalid backup – Data Storage identification mismatch

0xFF24 Invalid backup – Data Storage buffer overflow

0xFF25 Invalid backup – Data Storage parameter access
denied

0xFF31 Event lost – incorrect Event signaling

Release 1.0 76 OPC UA for IO-Link

9.6 IOLinkMasterEventType

The IOLinkMasterEventType is the base EventType for Events generated from an IO-Link
Master. It is formally defined in Table 52.

Table 52 – IOLinkMasterEventType Definition

Attribute Value

BrowseName IOLinkMasterEventType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Modelling Rule

Subtype of IOLinkEventType

The following rules for the inherited Properties apply.

• The mandatory Property SourceNode shall be the NodeId of the object representing the
IO-Link Master the event originates from.

• The mandatory Property SourceName shall be the string part of the BrowseName of the
Object representing the IO-Link Master the Event originates from.

• The mandatory Property Time shall be the time the Event occurred on the IO-Link
Master.

• The mandatory Property ReceiveTime shall be set to the time the OPC UA Server
receives the event. In case the OPC UA Server runs on the IO-Link Master, this might
be the same value as the value of Property Time.

• The Properties IOLinkEventCode and Message are vendor-specific. Vendors may also
create subtypes of this EventType to add vendor-specific Properties or to categorize the
events generated by the IO-Link Master.

9.7 IOLinkAlarmType

The IOLinkAlarmType is the base EventType for alarms generated from IO-Link Devices or IO-
Link Masters. It is formally defined in Table 53.

Table 53 – IOLinkAlarmType Definition

Attribute Value

BrowseNam
e

IOLinkAlarmType

IsAbstract True

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of OffNormalAlarmType defined in OPC UA Part 9.

HasSubtype ObjectType IOLinkDeviceAlarmType

HasSubtype ObjectType IOLinkPortAlarmType

HasSubtype ObjectType IOLinkMasterAlarmType

HasProperty Variable IOLinkEventCode UInt16 PropertyType Mandatory

The EventType inherits the InstanceDeclarations of the OffNormalAlarmType.

• The mandatory Property EventId is a vendor-specific unique identification of the Event.

• The mandatory Property EventType reflects the type of Event, so either the NodeId of
the IOLinkAlarmType or a subtype.

OPC UA for IO-Link 77 Release 1.0

• The content of the Properties SourceNode, SourceName, Time, ReceiveTime, and
Message is defined by its subtypes.

• The optional Property LocalTime shall not be provided.

• The Property Severity reflects the mode of IO-Link events. In case of “Warning” it shall
be “500” and in case of “Error” it shall be “700”.

• The mandatory Variable EnabledState reflects if the alarm has enabled. It is vendor-
specific. If the server does not support disabling of IO-Link alarms it shall always be set
to enabled.

• The mandatory Variable AckedState reflects if the alarm has been acknowledged. It is
vendor-specific. If the server does not support acknowledgment of IO-Link alarms it shall
always be set to acknowledged.

• The mandatory Variable ActiveState reflects if the alarm is active or not. The ActiveState
is set to active when an IO-Link event APPEARS, and set to inactive when an IO-Link
event DISAPPEARS.

• The behaviour of all Methods defined on the supertypes are vendor-specific, according
to the defined behaviour in OPC UA Part 9. If a server does not support specific
functionality like disabling or acknowledging IO-Link alarms, those Method calls shall
fail.

Note: The ConditionRefresh and ConditionRefresh2 Methods are not defined as
InstanceDeclarations and shall behave as defined in OPC UA Part 9.

• Whether the optional Variables defined on the supertypes are provided is vendor-
specific. If they are provided, the content shall be according to OPC UA Part 9.

• The content of the mandatory Variables defined on the supertypes is vendor-specific,
according to OPC UA Part 9.

o The mandatory Properties InputNode and NormalState are vendor-specific and
typically set to the NULL NodeId.

o The mandatory Property SuppressedOrShelved is vendor-specific and typically
set to “False”.

The Property IOLinkEventCode is defined by the subtypes of the EventType.

9.8 IOLinkDeviceAlarmType

The IOLinkDeviceAlarmType is the base EventType for alarms generated from IO-Link Devices.
It is formally defined in Table 54.

Table 54 – IOLinkDeviceAlarmType Definition

Attribute Value

BrowseNam
e

IOLinkDeviceAlarmType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of IOLinkAlarmType defined in 9.7.

HasSubtype ObjectType IOLinkIODDDeviceAlarmType

Release 1.0 78 OPC UA for IO-Link

The following rules for the inherited Properties apply.

• The mandatory Property SourceNode shall be the NodeId of the object representing the
IO-Link Device the event originates from.

• The mandatory Property SourceName shall be the string part of the BrowseName of the
Object representing the IO-Link Device the Event originates from.

• The mandatory Property Time shall be the time the IO-Link Master receives the Event
from the IO-Link Device.

Note that the event might have been generated already at an earlier time (more than
communication delays) in the IO-Link Device, before it was received by the IO-Link
Master.

• The mandatory Property ReceiveTime shall be set to the time the OPC UA Server
receives the event. In case the OPC UA Server runs on the IO-Link Master, this might
be the same value as the value of Property Time.

• In case the IO-Link event code is not described in an IODD, the mandatory Property
Message shall be set to “IO-Link EventCode: 0x<xxxx>” for the English locale, where
xxxx is the event code as hexadecimal representation. For example, for event code
0x18FF the message shall be “IO-Link EventCode: 0x18FF”. The server may provide
different locales containing a translation of that string. In case the IO-Link Specification
defines a specific string (Table D.1 of IO-Link Specification) for a specific event code,
the server may also use that string instead of the generic message. For example, for
event code 0x4000 the string “Temperature fault – Overload” is defined, and can be
used alternatively as Message.

• The mandatory Property IOLinkEventCode shall provide the two-octet event code of the
IO-Link Device as UInt16.

9.9 IOLinkIODDDeviceAlarmType

The IOLinkIODDDeviceAlarmType is the EventType for Alarms generated from IO-Link Devices
based on IODD information. It is formally defined in Table 55.

Table 55 – IOLinkIODDDeviceAlarmType Definition

Attribute Value

BrowseNam
e

IOLinkIODDDeviceAlarmType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of IOLinkAlarmType defined in 9.8.

HasProperty Variable Name LocalizedText PropertyType Mandatory

The following rules for the inherited Properties apply.

• The mandatory Property Message shall be mapped to the corresponding IODD
Event/Description element. Localization should be considered. If the optional element
Description is not provided, the mandatory element Name shall be used.

The mandatory Property Name shall be mapped to the corresponding IODD Event/Name
element. Localization should be considered.

OPC UA for IO-Link 79 Release 1.0

9.10 IOLinkPortAlarmType

The IOLinkPortAlarmType represents alarms triggered by a concrete port of an IO-Link Master.
It is formally defined in Table 56.

Table 56 – IOLinkPortAlarmType Definition

Attribute Value

BrowseName IOLinkPortAlarmType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Modelling Rule

Subtype of IOLinkAlarmType

The following rules for the inherited Properties apply.

• The mandatory Property SourceNode shall be the NodeId of the Object of
IOLinkPortType the event originates from.

• The mandatory Property SourceName shall start with the string part of the BrowseName
of the Object of IOLinkMasterType the IO-Link Port is connected to, followed by a “.”
and the string part of the BrowseName of the Object of IOLinkPortType the Event
originates from.

• The mandatory Property Time shall be the time the Event occurred on the IO-Link
Master.

• The mandatory Property ReceiveTime shall be set to the time the OPC UA Server
receives the event. In case the OPC UA Server runs on the IO-Link Master, this might
be the same value as the value of Property Time.

• The allowed IOLinkPortAlarms are defined in IO-Link Addendum as port specific events.
The EventCode ID shall be mapped to the IOLinkEventCode. In case of a vendor-
specific EventCode ID the Message is vendor-specific. In case of all other EventCode
IDs the descriptive text of IO-Link Addendum shall be used as Message for locale “en”.
For EventCode IDs 0xFF21 to 0xFFFF no text is defined. For those, the following
Message texts defined in Table 51 shall be used for locale “en”. Servers may provide
translations for all Message texts in other languages.

9.11 IOLinkMasterAlarmType

The IOLinkMasterAlarmType is the base EventType for alarms generated from an IO-Link
Master. It is formally defined in Table 57.

Table 57 – IOLinkMasterAlarmType Definition

Attribute Value

BrowseName IOLinkMasterAlarmType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Modelling Rule

Subtype of IOLinkAlarmType

The following rules for the inherited Properties apply.

• The mandatory Property SourceNode shall be the NodeId of the object representing the
IO-Link Master the event originates from.

• The mandatory Property SourceName shall be the string part of the BrowseName of the
Object representing the IO-Link Master the Event originates from.

Release 1.0 80 OPC UA for IO-Link

• The mandatory Property Time shall be the time the Event occurred on the IO-Link
Master.

• The mandatory Property ReceiveTime shall be set to the time the OPC UA Server
receives the event. In case the OPC UA Server runs on the IO-Link Master, this might
be the same value as the value of Property Time.

• The Properties IOLinkEventCode and the Message are vendor-specific. Vendors may
also create subtypes of this EventType to add vendor-specific Properties or to
categorize the alarms generated by the IO-Link Master.

OPC UA for IO-Link 81 Release 1.0

10 OPC UA VariableTypes

10.1 ProcessDataVariableType

This VariableType is used to represent the process data input and output of an IO-Link Device.
The Properties defined by this type define the length of the Variable as well as a descriptor of
the structure. The ProcessVariableType is formally defined in Table 58.

Table 58 – ProcessDataVariableType Definition

Attribute Value

BrowseName ProcessDataVariableType

IsAbstract False

ValueRank 1 (1 = OneDimension)

DataType Byte

References Node Class BrowseName DataType TypeDefinition Modelling Rule

Subtype of the BaseDataVariableType defined in OPC UA Part 5.

HasProperty Variable ProcessDataLength Byte PropertyType Mandatory

HasProperty Variable PDDescriptor Byte[][3] PropertyType Optional

The read-only Variable ProcessDataLength is representing the structure ProcessDataIn defined
in IO-Link Specification, B.1.6, and contains information about the length of the ProcessData.
The value (one byte) shall directly be mapped to the Byte DataType.

The optional read-only Variable PDDescriptor is representing the structure PD Input Descriptor
or PD Output Descriptor defined in IO-Link Common Profile, B.5.2 and B.5.3. The value shall
be mapped to an array of an array of Bytes of length three.

NOTE: The PDDescriptor defines the structure of the ProcessData by defining the data type,
length and offset in the data of potentially several data entries in the ProcessData (see IO-Link
Common Profile). It is not further mapped to OPC UA information (e.g. by providing sub -
variables for each entry with the concrete value based on the Proces sData) as this can
potentially change dynamically and this is not recognizable in time by the OPC UA Server.

11 OPC UA ReferenceTypes

11.1 HasIdentificationMenu

The HasIdentificationMenu ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the Organizes ReferenceType.

The semantic is to identify that the referenced Object represents the IdentificationMenu as
defined by MenuSetT of the IODD Specification.

The SourceNode of this ReferenceType shall be an Object of type FunctionalGroupType defined
in OPC UA Part 100 or one of its subtypes.

The TargetNode of this ReferenceType shall be an Object or type FunctionalGroupType defined
in OPC UA Part 100 or one of its subtypes. Its representation in the AddressSpace is specified
in Table 59.

Release 1.0 82 OPC UA for IO-Link

Table 59 – HasIdentificationMenu ReferenceType

Attributes Value

BrowseName HasIdentificationMenu

InverseName IdentificationMenuOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of the Organizes ReferenceType defined in OPC UA Part 5

11.2 HasParameterMenu

The HasParameterMenu ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the Organizes ReferenceType.

The semantic is to identify that the referenced Object represents the ParameterMenu as defined
by MenuSetT of the IODD Specification.

The SourceNode of this ReferenceType shall be an Object of type FunctionalGroupType defined
in OPC UA Part 100 or one of its subtypes.

The TargetNode of this ReferenceType shall be an Object or type Funct ionalGroupType defined
in OPC UA Part 100 or one of its subtypes. Its representation in the AddressSpace is specified
in Table 60.

Table 60 – HasParameterMenu ReferenceType

Attributes Value

BrowseName HasParameterMenu

InverseName ParameterMenuOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of the Organizes ReferenceType defined in OPC UA Part 5

11.3 HasObservationMenu

The HasObservationMenu ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the Organizes ReferenceType.

The semantic is to identify that the referenced Object represents the ObservationMenu as
defined by MenuSetT of the IODD Specification.

The SourceNode of this ReferenceType shall be an Object of type FunctionalGroupType defined
in OPC UA Part 100 or one of its subtypes.

The TargetNode of this ReferenceType shall be an Object or type Funct ionalGroupType defined
in OPC UA Part 100 or one of its subtypes. Its representation in the AddressSpace is specified
in Table 61.

Table 61 – HasObservationMenu ReferenceType

Attributes Value

BrowseName HasObservationMenu

InverseName ObservationMenuOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of the Organizes ReferenceType defined in OPC UA Part 5

OPC UA for IO-Link 83 Release 1.0

11.4 HasDiagnosisMenu

The HasDiagnosisMenu ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the Organizes ReferenceType.

The semantic is to identify that the referenced Object represents the DiagnosisMenu as defined
by MenuSetT of the IODD Specification.

The SourceNode of this ReferenceType shall be an Object of type FunctionalGroupType defined
in OPC UA Part 100 or one of its subtypes.

The TargetNode of this ReferenceType shall be an Object or type Funct ionalGroupType defined
in OPC UA Part 100 or one of its subtypes. Its representation in the AddressSpace is specified
in Table 62.

Table 62 – HasDiagnosisMenu ReferenceType

Attributes Value

BrowseName HasDiagnosisMenu

InverseName DiagnosisMenuOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of the Organizes ReferenceType defined in OPC UA Part 5

Release 1.0 84 OPC UA for IO-Link

12 Mapping of DataTypes

12.1 Overview

This section defines the mapping of data types defined in the IODD as well as the mapping of
the representation of a duration used in various places of IO-Link which are mapped to OPC
UA. It always defines the usage of an appropriate OPC UA DataType, and in some cases in
addition the use of specific VariableTypes, or specific Properties of the Variable to represent
specific meta data that cannot directly be mapped to OPC UA DataTypes.

12.2 Primitive DataTypes

12.2.1 Boolean DataType

The IODD data type BooleanT is mapped to the OPC UA DataType Boolean. The “True” value
of IODD (0xFF) is mapped to the “True” value of OPC UA, and the “False” value of IODD (“0x00”)
is mapped to the “False” value of OPC UA.

In case both SingleValue elements are provided in the IODD, and the value can directly be
mapped to a Variable (see 12.3), the VariableType TwoStateDiscreteType is used. The
TrueState Property contains the SingleValue representing “True” (see 13) and the FalseState
Property contains the SingleValue representing “False”.

In case only one SingleValue element is provided in the IODD, and the value can directly be
mapped to a Variable (see 12.3), the VariableType TwoStateDiscreteType is used as described
above, with the limitation, that the text field of the Property representing the missing state
contains an empty string.

In case no SingleValue element is provided in the IODD, and the value can directly be mapped
to a Variable (see 12.3), the VariableType BaseDataVariableType is used.

12.2.2 Integer DataTypes

The IODD data types IntegerT and UIntegerT are mapped to OPC UA DataTypes in different
ways, depending on various elements of the IODD.

1. If no SingleValue and no ValueRange is defined the DataType depends on the bitLength
according to Table 63. If the value can directly be mapped to a Variable (see 12.3), the
VariableType BaseDataVariableType is used. If the bitLength does not directly fit into
an OPC UA DataType (all bitLengths except 8, 16, 32 and 64) the Variable shall contain
a Property called InstrumentRange as defined in OPC UA Part 8 for
AnalogItemVariableType using the same BrowseName and DataType. In case of an
unsigned integer the low value shall be 0 and the high value according to the bitLength
(e.g. 127 for bitLength 7). In case of a signed integer the low and high value shall be
according to the bitLength (e.g. bitLength 7 leads to low = -63 and high = 63).

Table 63 – Mapping of Integer and UInteger data types

IO-Link data type IO-Link bitLength OPC UA DataType

UIntegerT 2..8 Byte

9..16 UInt16

17..32 UInt32

33..64 UInt64

IntegerT 2..8 SByte

9..16 Int16

17..32 Int32

33..64 Int64

OPC UA for IO-Link 85 Release 1.0

2. If no SingleValue and exactly one ValueRange is defined, the same mapping as defined
in (1) is used, except for the InstrumentRange Property. The InstrumentRange shall
always be provided and be filled according to the ValueRange definition.

3. If at least one SingleValue is defined and no ValueRange is defined:

a. If all SingleValue values fit into the range of an Int32, an OPC UA Enumeration

DataType is created, containing all SingleValue entries of the IODD definition in

the EnumValues Property (see section 13). If the value can directly be mapped

to a Variable (see section 12.3), the VariableType BaseDataVariableType shall

be used

b. If not all SingleValue values fit into the range of an Int32, the same mapping as

defined in (1) is used with the following exceptions. If the value can directly be

mapped to a Variable (see section 12.3), the VariableType

MultiStateValueDiscreteType shall be used, and the EnumValues are filled

according to the SingleValue entries (see section 13). The InstrumentRange

Property is provided as according to (1).

4. If no SingleValue and more than one ValueRange is defined the same mapping as

defined in (1) is used with the following exceptions. If the value can directly be mapped

to a Variable (see section 12.3), in addition to potentially providing the InstrumentRange

Property (depending on the bitLength) another Property InstrumentRanges (see section

13) is provided, containing an array of ranges, one entry for each ValueRange defined

in the IODD.

5. If at least one SingleValue and exactly one ValueRange is defined the same mapping

as defined in (2) is used with the following exceptions. If the value can directly be

mapped to a Variable (see section 12.3), an additional Property EnumValues (same as

defined on MultiStateValueDiscreteType in OPC UA Part 8) is provided, with one entry

for each SingleValue (see 13).

6. If at least one SingleValue and more than one ValueRange is defined the same mapping

as defined in (1) is used with the following exceptions. If the value can directly be

mapped to a Variable (see section 12.3), an additional Property EnumValues (same as

defined on MultiStateValueDiscreteType in OPC UA Part 8) is provided, with one entry

for each SingleValue defined in the IODD, and in addition to po tentially providing the

InstrumentRange Property (depending on the bitLength) another Property

InstrumentRanges (see section 13) is provided, containing an array of ranges, one entry

for each ValueRange defined in the IODD.

Note: Due to the meta data provided in the IODD an OPC UA Server can already identify that a write operation to a
device will fail if the value is out of range. It is recommended that OPC UA Servers already check the value to avoid
unnecessary communication to the IO-Link Device.

12.2.3 Float DataType

The IODD data type FloatT and the OPC UA DataType Float follow the same specification and
can directly be mapped.

In case the value can directly be mapped to a Variable (see section 12.3) the following rules
apply:

1. If no SingleValue and no ValueRange is defined, the VariableType

BaseDataVariableType is used.

2. If no SingleValue and exactly one ValueRange is defined, the VariableType

BaseDataVariableType is used. The Variable shall have the additional Property

InstrumentRange as defined in OPC UA Part 8 for AnalogItemVariableType using the

same BrowseName and DataType. The InstrumentRange shall be filled according to the

ValueRange definition.

3. If at least one SingleValue is defined and no ValueRange is defined , the VariableType

MultiStateValueDiscreteType shall be used, and the EnumValues filled according to the

SingleValue entries (see section 13).

Release 1.0 86 OPC UA for IO-Link

4. If no SingleValue and more than one ValueRange is defined the VariableType

BaseDataVariableType is used. The Variable shall have a Property InstrumentRanges

(see section 13), containing an array of ranges, one entry for each ValueRange defined

in the IODD.

5. If at least one SingleValue and exactly one ValueRange is defined the same mapping

as defined in (2) is used with the following exception: An additional Property

EnumValues (same as defined on MultiStateValueDiscreteType in OPC UA Part 8) is

provided, with one entry for each SingleValue (see section 13).

6. If at least one SingleValue and more than one ValueRange is defined the same mapping

as defined in (4) is used with the following exception: An additional Property EumValues

(same as defined on MultiStateValueDiscreteType in OPC UA Part 8) is provided, with

one entry for each SingleValue (see section 13).

12.2.4 String DataType

The IODD data type StringT can either use ASCII or UTF-8 encoding. It is always mapped to
an OPC UA DataType String, which is UTF-8 encoded.

The mapping requires that IO-Link ASCII based strings are converted to UTF-8. Mapping an
ASCII string to UTF-8 can always be done but mapping an UTF-8 string to ASCII may fail (when
writing a UTF-8 string to an IO-Link Device expecting only ASCII strings). In case the OPC UA
Server cannot do a transformation, the operation shall fail.

If the value can directly be mapped to a Variable (see section 12.3), the BaseDataVariableType
is used, and the mandatory element fixedLength is mapped to the Property MaxStringLength
defined in OPC UA Part 3, and the element encoding to the Property Encoding (see section 13).
If the Variable is referenced by a StdVariableRef, and the fixedLengthRestriction is defined, this
needs to be used instead.

12.2.5 Byte[] DataType

The IODD data type OctetStringT is mapped to an array of the OPC UA DataType Byte. This
mapping, instead of using the OPC UA DataType ByteString, allows to always provide the length
of the array. The OctetStringT provides the mandatory element fixedLength which is directly
mapped to the ArrayDimensions Attribute. If the value can directly be mapped to a Variable
(see section 12.3), the VariableType BaseDataVariableType is used with no additional
Properties.

12.2.6 DateTime DataType

12.2.6.1 Overview

The IODD data type TimeT is mapped to an OPC UA DataType DateTime.

The IODD data type TimeT has a length of 8 bytes, consisting of two 32-bit unsigned integers.
The bytes 1 to 4 represent the seconds starting from 1900-01-01 0.00,00 (UTC) and the bytes

5 to 8 represent the fractional part of the current second in 1/232 seconds. Because the time
range before 1984-01-01 0:00,00 (UTC) is in the past (where IO-Link did not exist), the time
values (seconds) from 0x00000000 to 0x9DFF4400 (exclusive) are mapped to the time after
2036-02-07 6.28,16 (UTC). See IO-Link Specification for more details.

The OPC UA DataType DateTime consists of a 64-bit signed integer which represents the

number of 100 nanosecond intervals (1/106 seconds) since January 1, 1601 (UTC).

The OPC UA DataType provides a larger range whereas the IO-Link data type provides a higher
precision. Therefore, the following conversion rules shall apply (see OPC UA Part 6).
Implementers shall ensure that the time value mappings are done as exactly as possible.

OPC UA for IO-Link 87 Release 1.0

12.2.6.2 Conversion from IO-Link TimeT to OPC UA DateTime

Consider the borders of the IO-Link TimeT value range:

• If the IO-Link TimeT value is equal to the smallest possible IO-Link time value (1984-
01-01 0:00,00 (UTC), seconds value: 0x9DFF4400, fractional seconds value: 0), the
OPC UA DateTime value shall be 0.

• If the IO-Link TimeT value is equal to the highest possible IO-Link time value (2120-02-
07 6:28,15 (UTC), seconds value: 0x9DFF4399, fractional seconds value 0xFFFFFFFF),
the OPC UA DateTime value shall be 0x7FFFFFFFFFFFFFFF (maximum value for 64-
bit signed integer).

If none of the rules above apply, the IO-Link TimeT rollover has to be considered:

• If the IO-Link TimeT value is smaller than (1984-01-01 0:00,00 (UTC), seconds value:
0x9DFF4400, fractional seconds value: 0), the time base offset has to be the difference
between 1601-01-01 0:00:00 and 2036-02-07 6.28,16 (UTC).

• If the IO-Link TimeT value is bigger than (1984-01-01 0:00,00 (UTC)), the time base
offset has to be the difference between 1601-01-01 0:00:00 (UTC) and 1901-01-01
0:00:00 (UTC).

The time value conversion works according to the following formula:

OPC UA DateTime = IO-Link TimeT seconds ∙ 106 +
IOLink TimeT fractional seconds ∙ 106

232 + time base offset

12.2.6.3 Conversion from OPC UA DateTime to IO-Link TimeT

Consider the borders of the IO-Link TimeT value range:

• If the OPC UA DateTime value is equal or greater than 2120-02-07 6:28,15 (UTC), the
IO-Link TimeT value shall be 2120-02-07 6:28,15 (UTC), seconds value: 0x9DFF4399,
fractional seconds value 0xFFFFFFFF).

• If the OPC UA DateTime value is equal or smaller than 1984-01-01 0:00,00 (UTC), the
IO-Link TimeT value shall be 1984-01-01 0:00,00 (UTC), seconds value: 0x9DFF4400,
fractional seconds value: 0).

If none of the rules above apply, the IO-Link TimeT rollover has to be considered:

• If the OPC UA DateTime value is equal or greater than 2036-02-07 6.28,16 (UTC), the
time base offset has to be the difference between 1601-01-01 0:00:00 and 2036-02-07
6.28,16 (UTC).

• If the OPC UA DateTime value is smaller than 2036-02-07 6.28,16 (UTC), the time base
offset has to be the difference between 1601-01-01 0:00:00 and 1901-01-01 0:00:00
(UTC).

The time value conversion works according to the following formulas:

IO-Link TimeT seconds =
OPC UA DateTime − time base offset

106

IO-Link TimeT fractional seconds =
((OPC UA DateTime − time base offset) % 106) ∙ 232

106

Release 1.0 88 OPC UA for IO-Link

12.2.6.4 Conversion of special values (Summary)

Table 64 and Table 65 list some special values and their conversion to the other time data type.
They can be used as a base set to test the conversion algorithm implementation (together with
other input-output pairs).

Table 64 – OPC UA DateTime to IO-Link TimeT – Special values

Input (OPC UA DateTime) Output (IO-Link TimeT)

Seconds value Description Seconds value

Date/time value before 1984/01/01
0:00:00,000AM (inclusive)

Date/time value is "truncated" 1984/01/01 00:00:00,000AM

Date/time value after 2120/02/07
06:28:15,999AM (inclusive)

Date/time value is "truncated" 2120/02/07 06:28:15,999AM

0 Minimal OPC UA DateTime value
= 1601/01/01 12:00:00,000AM

1984/01/01 00:00:00,000AM

INT64_MAX
(0x7FFFFFFFFFFFFFFF)

Maximal OPC UA DateTime value
= 9999/12/31 11:59:59,000PM

2120/02/07 06:28:15,999AM

Table 65 – IO-Link TimeT to OPC UA DateTime – Special values

Input (IO-Link TimeT) Output (OPC UA DateTime)

Seconds value Description Seconds value

1984/01/01 00:00:00,000AM Minimal IO-Link TimeT value 0

2120/02/07 06:28:15,000AM Maximal IO-Link TimeT value INT64_MAX

0 First number after IO-Link TimeT rollover 2036/02/07 06:28:17,000AM

seconds = UINT32_MAX,
fSeconds = UINT32_MAX

Last number before IO-Link TimeT rollover 2036/02/07 06:28:16,999AM

12.2.7 Duration DataType

12.2.7.1 Duration DataType used for TimeSpanT

12.2.7.1.1 Overview

The IODD data type TimeSpanT is mapped to the OPC UA DataType Duration.

The IODD data type TimeSpanT consists of 8 bytes representing fractions of a second (1/232
seconds). See IODD Specification for more details.

The OPC UA DataType Duration consists of a Double variable representing the number of
milliseconds. Fractions can be used to represent fractions of milliseconds. See OPC UA Part 3
for more details.

The following rules for conversion apply. Implementers shall ensure that the time span value
mappings are done as exactly as possible.

12.2.7.1.2 Conversion from IO-Link TimeSpanT to OPC UA Duration

As the range of the OPC UA Duration values is bigger than the IO-Link TimeSpanT value, the
following conversion formula can be applied without restrictions:

OPC UA Duration =
IO-Link TimeSpanT ∙ 103

232

12.2.7.1.3 Conversion from OPC UA Duration to IO-Link TimeSpanT

If the OPC UA Duration value is bigger than the maximum IO-Link TimeSpanT value (≈ 264 − 1)

converted to milliseconds (≈ (264 − 1) ∙ 103), the IO-Link TimeSpanT value has to be the
maximum value for 64-bit unsigned integer 0xFFFFFFFFFFFFFFFF.

OPC UA for IO-Link 89 Release 1.0

If the OPC UA Duration value fits into this range, the following conversion formula shall be
applied:

IO-Link TimeSpanT =
OPC UA Duration ∙ 232

103

12.2.7.2 Duration DataType used for values coded with 1 byte

IO-Link uses in several places an octet to represent a duration in ms (e.g. MasterCycleTime
and OffsetTime). As a time base and a multiplier is used, not all possible values are
represented. The OPC UA DataType Duration uses a higher resolution.

If the client writes a value that cannot exactly be mapped, the server shall use the next possible
lower value.

If the client tries to write a value outside the allowed range (either because of the larger size of
the DataType or based on further limitations defined by the IO-Link Specification), the server
shall return the error code “Bad_OutOfRange”.

12.3 Mapping of Records and Arrays

12.3.1 Overview

In IODDs data types can either be used to represent the structure of a variable and this variable
is mapped to an OPC UA Variable (see section 7.3.6), or an IODD data type is used in the
context of an array or record. The following subsections describe the mapping, including
whether an OPC UA Variable is used as sub-variable.

12.3.2 Structure DataType

For each IODD Record a new OPC UA DataType as subtype of Structure is created.

• The NodeId of the new DataType is composed of the NodeId of the ObjectType
generated for the IODD (see section 7.3.2) and the Record/@id
(“<ObjectTypeId>||<Record id>”).

• The BrowseName and DisplayName are server-specific. It is recommended to use the
Name element of the Variable in the IODD (default language English resolved textId)
and “DataType” as postfix. For example, when the Variable Name has the textId
“V_N_autosafeparameter”, which is defined as “autosafe parameter” in the IODD as
default, the DataType BrowseName is “autosafe parameterDataType”. The
DisplayName is LocalizedText, thus also different locales can be provided, using the
corresponding texts of the IODD for the different locales.

• The DataType shall use OPC Binary Encoding as definition. The DataTypeDefinition
Attribute shall describe the structure according to the IODD and the rules defined next.

• In the StructureDefinition (DataTypeDefinition Attribute) the field defaultEncodingId
shall be “Default Binary”, the field baseDataType shall be “Structure”, and the field
structureType “Structure_0”.

• The array of fields (of type StructureField) shall be filled: For each IODD RecordItem
defined in the IODD an entry shall be made with the following rules:

o The Name of the IODD RecordItem (default language English resolved textId)
shall map to the field name of StructureField

Release 1.0 90 OPC UA for IO-Link

o The Description of the IODD RecordItem shall map to the field description of
StructureField

o The data type of the IODD RecordItem shall map to the dataType of
StructureField following Table 66

Table 66 – Mapping of data types used in IODD Record

IO-Link data type OPC UA DataType Remark

IntegerT Specific Integer or Enumeration
DataType

Details see section 12.2.2

UIntegerT Specific UInteger or Enumeration
DataType

Details see section 12.2.2

Float32T Float Details see section 12.2.3

BooleanT Boolean Details see section 12.2.1

OctetStringT Byte[] Details see section 12.2.5

StringT String Details see section 12.2.4

TimeT DateTime Details see section 12.2.6

TimeSpanT Duration Details see section 12.2.7.2

o The field valueRank shall be “Scalar”

o The field arrayDimensions shall be null, except for the OctetStringT data type
mapping, where the fixedLength element is mapped to arrayDimensions

o The field maxStringLength shall contain the fixedLength for Strings, otherwise
“0”

o The field isOptional shall be “False”

In addition to the structured DataType more things need to be considered. If the new defined
Structure DataType is used in an OPC UA Variable, the following rules apply.

• If all entries of the IODD Record are readable (RO or RW), the Variable becomes
readable, otherwise the Variable as such is not readable.

• If all entries of the IODD Record are writable (WO or RW), the Variable becomes
writeable, otherwise the Variable as such is not writeable.

• If the IODD Record has “subindexAccessSupported” to “True”, each entry of the
structure is also exposed as subvariables following the general rules (e.g. for IntegerT,
which might lead to an Enum DataType or usage of specific VariableTypes). If the
individual entry is readable, the Variable becomes readable, if the individual entry is
writable the Variable becomes writeable.

• If the IODD Record has “subindexAccessSupported” to “False”, but it contains entries
that would map to Variables with additional Properties, those entries shall be exposed
as subvariables following the general rules (because of the meta data). If the whole
record is readable, they shall become readable but not writeable, otherwise they become
neither readable nor writeable. Such subvariables shall be created for all StringT, and
some IntegerT, UIntegerT, FloatT, and BooleanT (depending whether the concrete
mapping would create a Property on the Variable). If does not need to be provided for
OctetStringT, TimeT, and TimeSpanT.

• If an entry of the IODD Record is referenced by a RecordItemRef it shall be exposed as
sub-variable, even if the RecordItemRef is in an optional IODD Menu.

Note that a VariableRef and RecordItemRef defines additional characteristics (see 7.3). Those
need to be considered as well.

OPC UA for IO-Link 91 Release 1.0

12.3.3 Array DataTypes

An IODD variable having the IODD data type ArrayT is mapped to an OPC UA Variable with
ValueRank OneDimensionalArray.

The data type used in the array of the IODD is the base for the mapping of the data type to OPC
UA (see 12.2). That does include the VariableType to use and what Properties on the Variable
shall exist.

The ValueRank Attribute of the OPC UA Variable shall be OneDimensionalArray.

The ArrayDimensions Attribute of the OPC UA Variable shall be an array with exactly one entry.
The value of that entry shall be the size element of the IODD Variable.

12.4 Enumeration and OptionSet DataTypes

12.4.1 EncodingEnum

This DataType is an enumeration that defines the encoding of the string used in the IO-Link
Device. Its values are defined in Table 67.

Table 67 – EncodingEnum Values

Value Description

ASCII_0 The string is encoded as ASCII.

UTF8_1 The string is encoded as UTF-8.

Its representation in the AddressSpace is defined in Table 68.

Table 68 – EncodingEnum Definition

Attributes Value

BrowseName EncodingEnum

Subtype of the Enumeration DataType defined in OPC UA Part 5

Release 1.0 92 OPC UA for IO-Link

13 Standardized Properties and Mapping to the Properties

13.1 InstrumentRange

InstrumentRange is defined in OPC UA Part 8 as Property of the AnalogItemType. In this
specification the Property is used for Variables, independent of the VariableType.

The Property uses the DataType Range defined in OPC UA Part 8 having a low and a high
value. The mapping of an IODD ValueRange to the OPC UA Range is defined in Table 69.

Table 69 – Mapping of IODD ValueRange to OPC UA Range

IODD attribute OPC UA field

lowerValue low

upperValue high

13.2 InstrumentRanges

The InstrumentRanges Property is defined by this specification and used for Variables,
independent of the VariableType. The BrowseName is “InstrumentRanges” and the DataType
an array of Range (defined in OPC UA Part 8).

The mapping of IODD ValueRange to Range is defined in 13.1

13.3 EnumValues

EnumValues is defined in OPC UA Part 8 as Property of the MultiStateValueDiscreteType. In
this specification the Property is used for Variables, independent of the VariableType.

The Property uses an array the EnumValueType. When an IODD defined SingleValue is mapped
to an entry of the array, the following rules apply:

The IODD value is mapped to the OPC UA value.

The IODD name is mapped to the OPC UA displayName. The IODD value contains a TextRefT
referencing a text, potentially in several languages. The displayName is LocalizedText, thus
also different locales can be provided. The localeId shall contain the corresponding language,
and the text the referenced text.

The OPC UA description shall be left empty.

13.4 TrueState and FalseState

The TrueState and FalseState are defined in OPC UA Part 8 as Properties of the
TwoStateDiscreteType.

Each Property uses a LocalizedText. When an IODD defined SingleValue is mapped to such a
LocalizedText, the name of the SingleValue containing a TextRefT referencing a text, potentially
in several languages. The localeId shall contain the corresponding language, and the text the
referenced text.

13.5 Encoding

The Encoding Property is defined by this specificat ion and used for Variables, independent of
the VariableType. The BrowseName is “Encoding” and the DataType an EncodingEnum (see
12.4.1).

OPC UA for IO-Link 93 Release 1.0

When the IODD CharacterEncodingT is mapped to the Property, the UA-ASCII value shall be
mapped to ASCII_0 and the UTF-8 value to UTF8_1.

13.6 DisplayFormat

The DisplayFormat Property is defined by this specification and used for Variables, independent
of the VariableType. The BrowseName is “DisplayFormat” and the DataType a String. It contains
the String as defined in the IODD as displayFormat.

Release 1.0 94 OPC UA for IO-Link

14 ISDU Error Handling

14.1 Overview

This section describes the handling of ISDU errors (ErrorTypes). IO-Link Errors are not to be
confused with IO-Link Events.

14.2 Occurrence of ISDU Errors

There are two ways how this OPC UA Mapping can trigger IO-Link ISDU requests:

1. Executing some OPC UA Methods (like ReadISDU, WriteISDU, SystemCommand, etc.).

2. Reading or writing some OPC UA Variables (which trigger an ISDU request).

In both access ways an ISDU request can fail and IO-Link will respond with an ISDU error. In
case of error the OPC UA Service response (of Services like Read, Write or Call) should contain
information about the error in diagnosticInfos[] as specified in the following paragraphs. If an
ISDU error occurs and the ISDU request was triggered with an OPC UA Method, the output
parameter "ErrorType" contains the raw ISDU error as well.

NOTE To get content in the field diagnosticInfos[] an OPC UA Client has to indicate in the OPC UA Service
RequestHeader that diagnostic info associated with the operation of the Service has to be returned. This is done by
setting the appropriate bits of returnDiagnostics, a field of the OPC UA Service RequestHeader. (See OPC UA Part
4 for more details).

14.3 Mapping of ISDU Errors in DiagnosticInfo

If an ISDU error occurs the OPC UA Service Response array diagnosticInfos[] shall contain at
least one element of DataType DiagnosticInfo.

The following rules apply to fill the fields of the DiagnosticInfo structure. The DiagnosticInfo
structure does not contain the Strings itself (except additionalInfo), but an index of the position
of the String in the stringTable.

Table 70 – Mapping of ISDU Errors in DiagnosticInfo

DiagnosticInfo
structure element

ISDU Error related description example

namespaceUri IO-Link ErrorType Namespace "http://opcfoundation.org/UA/IOLink/"

symbolicId Error Code and Additional Code as 4-digit hex number "0x8012"

locale Locale of localizedText "en"

localizedText String that describes the symbolicId "Subindex not available"

additionalInfo Vendor-specific diagnostic information ""

The field namespaceUri contains the IO-Link ErrorType Namespace:
"http://opcfoundation.org/UA/IOLink/".

The field symbolicId contains the IO-Link Error Code and Additional Code (as described in the
IO-Link Specification) as 4-digit hex number converted to a String.

The field locale contains the country and region description of the language that is used in
localizedText.

The field localizedText contains a verbal description of the error codes (symbolicId).

Note: This is a String, but not the bui lt-in OPC UA DataType LocalizedText! The content of
localizedText is specified in 14.4.

http://opcfoundation.org/UA/IOLink/
http://opcfoundation.org/UA/IOLink/

OPC UA for IO-Link 95 Release 1.0

The content of additionalInfo is specified in 14.4.

14.4 Content of localizedText in DiagnosticInfo

14.4.1 No IODD information available

If the combination of IO-Link Error Code and Additional Code is listed in the IO-Link
Specification, the sever shall use the text of Table C.1 or Table C.2 in column "Incident" as
localizedText. Default locale is "en". Servers may provide vendor-specific translations to other

languages. (In this case they have to adjust the value of locale as well.)

If the combination of IO-Link Error Code and Additional Code is vendor-specific (0x8101 to
0x81FF) no string shall be provided at all. This is indicated by giving stringTable index -1 as
localizedText.

The content of additionalInfo is vendor-specific, but usually an empty string.

14.4.2 IODD information available

If the combination of IO-Link Error Code and Additional Code is listed in the IODD
StandardDefinitions (see IODD Specification), the server shall use text specified there with the
appropriate locale as localizedText. Servers may provide vendor-specific translations to other
languages. (In this case they have to adjust the value of locale as well.)

If the combination of IO-Link Error Code and Additional Code is vendor-specific (0x8101 to
0x81FF) the IODD should contain an entry in its ErrorTypeCollection.

• If the IODD does not contain a corresponding entry in its ErrorTypeCollection no string
shall be provided at all. This is indicated by giving stringTable index -1 as localizedText.
Note: IODDs following IODD Specification 1.0.1 do not have an ErrorTypeCollection at
all.

• If the IODD contains a corresponding entry in its ErrorTypeCollection, the localizedText
contains the text referenced by the XML property "Name" of the XML element
"ErrorType". The additionalInfo contains the text referenced by the XML property
"Description" of the XML element "ErrorType", if the description is available. In all other
cases the content of additionalInfo is vendor-specific, but usually an empty string.

As a result of this, the StdErrorTypeRef elements of the ErrorTypeCollection in the IODD might
be ignored by the OPC UA server.

Release 1.0 96 OPC UA for IO-Link

15 Profiles and Namespaces

15.1 Namespace Metadata

15.1.1 Namespace http://opcfoundation.org/UA/IOLink/

Table 71 defines the namespace metadata for this specification. The Object is used to provide
version information for the namespace and an indication about static Nodes. Static Nodes are
identical for all Attributes in all Servers, including the Value Attribute. See OPC UA Part 5 for
more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a
component of the Namespaces Object that is part of the Server Object. The
NamespaceMetadataType ObjectType and its Properties are defined in OPC UA Part 5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML
file. The UANodeSet XML schema is defined in OPC UA Part 6.

Table 71 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://opcfoundation.org/UA/IOLink/

References BrowseName DataType Value

HasProperty NamespaceUri String http://opcfoundation.org/UA/IOLink/

HasProperty NamespaceVersion String 1.0

HasProperty NamespacePublicationDate DateTime 2018-12-01

HasProperty IsNamespaceSubset Boolean Vendor-specific

HasProperty StaticNodeIdTypes IdType[] Null

HasProperty StaticNumericNodeIdRange NumericRange[] {0:9999}

HasProperty StaticStringNodeIdPattern String Null

15.1.2 Namespace http://opcfoundation.org/UA/IOLink/IODD/

Table 72 defines the namespace metadata for the namespace
http://opcfoundation.org/UA/IOLink/IODD/. The Object is used to provide version information for
the namespace and an indication about static Nodes. Static Nodes are identical for all Attributes
in all Servers, including the Value Attribute. See OPC UA Part 5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a
component of the Namespaces Object that is part of the Server Object. The
NamespaceMetadataType ObjectType and its Properties are defined in OPC UA Part 5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML
file. The UANodeSet XML schema is defined in OPC UA Part 6.

Table 72 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://opcfoundation.org/UA/IOLink/IODD/

References BrowseName DataType Value

HasProperty NamespaceUri String http://opcfoundation.org/UA/IOLink/IODD/

HasProperty NamespaceVersion String 1.0

HasProperty NamespacePublicationDate DateTime 2018-12-01

HasProperty IsNamespaceSubset Boolean Vendor-specific

HasProperty StaticNodeIdTypes IdType[] {NUMERIC_0, STRING_1}

HasProperty StaticNumericNodeIdRange NumericRange[] Null

HasProperty StaticStringNodeIdPattern String Null

OPC UA for IO-Link 97 Release 1.0

15.2 Conformance Units and Profiles

This chapter defines the corresponding Profiles and Conformance Units for the OPC UA for IO
Link Information Model. Profiles are named groupings of Conformance Units. Facets are Profiles
that will be combined with other Profiles to define the complete functionality of an OPC UA Server or
Client.

15.3 Server Facets

The following tables specify the Facets available for Servers that implement the OPC UA for
IO-Link Information Model companion specification.

15.3.1 IO-Link Event Facet

The “IO-Link Event Facet” defines a Facet for the functionality necessary for IO-Link Events
derived from Type IOLinkEventType (see 9.2).
The content of the Profile if defined in Table 73.

Table 73 – IO-Link Event Facet

Conformance Unit Description Optional/
Mandatory

IO-Link Events Supports Events derived from the IOLinkEventType. M

Profiles

Standard Event Subscription Server Facet
http://opcfoundation.org/UA-Profile/Server/StandardEventSubscription

In addition, OPC UA Servers supporting this Facet may optionally also support the Facets
defined in Table 74.

Table 74 – Optional Facets for IO-Link Event Facet

Profiles

Address Space Notifier Server Facet
http://opcfoundation.org/UA-Profile/Server/AddressSpaceNotifier

Auditing Server Facet
http://opcfoundation.org/UA-Profile/Server/Auditing

15.3.2 IO-Link Base Condition Facet

The “IO-Link Base Condition Facet” defines a Facet for the functionality necessary for IO-Link
Conditions derived from Type IOLinkAlarmType (see 9.7).
The content of the Facet if defined in Table 75.

Table 75 – IO-Link Base Condition Facet

Conformance Unit Description Optional/
Mandatory

IO-Link Alarms Supports Events and Objects derived from the
IOLinkAlarmType.

M

Profiles

A & C Base Condition Server Facet
http://opcfoundation.org/UA-Profile/Server/ACBaseCondition

In addition, OPC UA Servers supporting this Facet may optionally also support the Facets
defined in Table 76.

Table 76 – Optional Facets for IO-Link Base Condition Facet

Profiles

A & C Refresh2 Server Facet
http://opcfoundation.org/UA-Profile/Server/ACRefresh2

A & C Enable Server Facet
http://opcfoundation.org/UA-Profile/Server/ACEnable

http://opcfoundation.org/UA-Profile/Server/StandardEventSubscription
http://opcfoundation.org/UA-Profile/Server/AddressSpaceNotifier
http://opcfoundation.org/UA-Profile/Server/Auditing
http://opcfoundation.org/UA-Profile/Server/ACBaseCondition
http://opcfoundation.org/UA-Profile/Server/ACRefresh2
http://opcfoundation.org/UA-Profile/Server/ACEnable

Release 1.0 98 OPC UA for IO-Link

A & C Previous Instances Server Facet
http://opcfoundation.org/UA-Profile/Server/ACPreviousInstances

A & C Dialog Server Facet
http://opcfoundation.org/UA-Profile/Server/ACDialog

A & C CertificateExpiration Server Facet
http://opcfoundation.org/UA-Profile/Server/ACCertificateExpiration

15.3.3 IO-Link Alarm Facet

The “IO-Link Alarm Facet” defines a Facet for the functionality necessary for IO-Link Alarms
derived from Type IOLinkAlarmType (see 9.7).
The content of the Facet if defined in Table 77.

Table 77 – IO-Link Alarm Facet

Conformance Unit Description Optional/
Mandatory

IO-Link Alarms Supports Events and Objects derived from the
IOLinkAlarmType.

M

Profiles

A & C Alarm Server Facet
http://opcfoundation.org/UA-Profile/Server/ACAlarm

In addition, OPC UA Servers supporting this Facet may optionally also support the Facets
defined in Table 78.

Table 78 – Optional Facets for IO-Link Alarm Facet

Profiles

A & C Acknowledgeable Alarm Server Facet
http://opcfoundation.org/UA-Profile/Server/ACAckAlarm

A & C Exclusive Alarming Server Facet
http://opcfoundation.org/UA-Profile/Server/ACExclusiveAlarming

A & C Non-Exclusive Alarming Server Facet
http://opcfoundation.org/UA-Profile/Server/ACNon-ExclusiveAlarming

15.4 Server Profiles

The following tables specify the Profiles available for IO-Link Devices and Masters that
implement the OPC UA for IO-Link Information Model companion specification.

15.4.1 IO-Link Base Profile

This Profile supports the information for IO-Link Masters and IO-Link Devices. It does not
include support for IO-Link Device Description file handling.
This Profile is intended to be used of OPC UA servers with limited resources. It is built upon the
“Micro Embedded Device 2017 Server Profile” Profile, which suppo rts subscriptions and at least
two sessions.
The content of the Profile if defined in Table 79.

Table 79 – IO-Link Base Profile

Conformance Unit Description Optional/
Mandatory

Generic IO-Link
Device, IO-Link
Master

Supports all mandatory ObjectTypes that are connected
with the ObjectTypes IOLinkDeviceType and
IOLinkMasterType (excluding subtypes defined in this
specification).

M

DiagnosticInfos
Support

Supports delivering DiagnosticInfos in the OPC UA
response header. This is used to get additional
information about the IO-Link errors.

O

Profiles

Micro Embedded Device 2017 Server Profile
http://opcfoundation.org/UA-Profile/Server/MicroEmbeddedDevice2017

M

http://opcfoundation.org/UA-Profile/Server/ACPreviousInstances
http://opcfoundation.org/UA-Profile/Server/ACDialog
http://opcfoundation.org/UA-Profile/Server/ACCertificateExpiration
http://opcfoundation.org/UA-Profile/Server/ACAlarm
http://opcfoundation.org/UA-Profile/Server/ACAckAlarm
http://opcfoundation.org/UA-Profile/Server/ACExclusiveAlarming
http://opcfoundation.org/UA-Profile/Server/ACNon-ExclusiveAlarming
http://opcfoundation.org/UA-Profile/Server/MicroEmbeddedDevice2017

OPC UA for IO-Link 99 Release 1.0

Conformance Unit Description Optional/
Mandatory

Method Server Facet
http://opcfoundation.org/UA-Profile/Server/Methods

M

BaseDevice_Server_Facet (defined in OPC UA Part 100) M

In addition, OPC UA Servers supporting this Facet may optionally also support the Facets
defined in Table 80.

Table 80 – Optional Facets for IO-Link Base Profile

Profiles

IO-Link Event Facet (see 15.3.1)

IO-Link Base Condition Facet (see 15.3.2)

IO-Link Standard Alarm Facet (see 15.3.3)

15.4.2 IO-Link Advanced Profile

This Profile supports the communication with IO-Link Masters and IO-Link Devices via OPC UA.
It includes support for IO-Link Device Description file handling and includes all features of the
"IO-Link Base Profile".
This Profile builds upon the “Embedded 2017 UA Server Profile”. In comparison to the "Micro
Embedded Device 2017 Server Profile" it adds for example support for Security Policies and
the "Standard DataChange Subscription Server Facet".
The content of the Profile if defined in Table 81.

Table 81 – IO-Link Advanced Profile

Conformance Unit Description Optional/
Mandatory

Handling of IO-Link
Device
Descriptions

Supports Handling of IO-Link Device Descriptions -
Supports all mandatory ObjectTypes that are connected
with the IOLinkIODDDeviceType.

M

Management of IO-
Link Device
Descriptions

Supports standardized management of IODDs via OPC
UA - The optional object IODDManagement with its
containing objects and methods shall be mandatory.

O

Profiles

Embedded 2017 UA Server Profile
http://opcfoundation.org/UA-Profile/Server/EmbeddedUA2017

M

ComplexType 2017 Server Facet
http://opcfoundation.org/UA-Profile/Server/ComplexTypes2017

M

IO-Link Base Profile (see 15.4.1) M

15.5 Client Facets

This specification does not define any Client Facets.

15.6 Handling of OPC UA namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming
authorities. The Attributes NodeId and BrowseName are identifiers. A Node in the
AddressSpace is unambiguously identified using a NodeId. Unlike NodeIds, the BrowseName
cannot be used to unambiguously identify a Node. Different Nodes may have the same
BrowseName. They are used to build a browse path between two Nodes or to define a standard
Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName.
However, if they want to provide a standard Property, its BrowseName shall have the
namespace of the standards body although the namespace of the NodeId reflects something
else, for example the EngineeringUnits Property. All NodeIds of Nodes not defined in this
specification shall not use the standard namespaces.

http://opcfoundation.org/UA-Profile/Server/Methods
http://opcfoundation.org/UA-Profile/Server/EmbeddedUA2017
http://opcfoundation.org/UA-Profile/Server/ComplexTypes2017

Release 1.0 100 OPC UA for IO-Link

Table 82 provides a list of mandatory and optional namespaces used in an OPC UA for IO-Link
Server.

Table 82 – Namespaces used in an OPC UA for IO-Link Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in
the OPC UA specification. This namespace shall have
namespace index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This
may include types and instances used in an AutoID
Device represented by the server. This namespace
shall have namespace index 1.

Mandatory

http://opcfoundation.org/UA/DI/ Namespace for NodeIds and BrowseNames defined in
OPC UA Part 100. The namespace index is vendor-
specific.

Mandatory

http://opcfoundation.org/UA/IOLink/ Namespace for NodeIds and BrowseNames defined in
this specification. The namespace index is vendor-
specific.

Mandatory

http://opcfoundation.org/UA/IOLink/IODD/ Namespace for NodeIds and BrowseNames for Nodes
generated based on IODDs.

Optional

Vendor-specific types and instances A server may provide vendor-specific types like types
derived from ObjectTypes defined in this specification
or vendor-specific instances of those types in a
vendor-specific namespace.

Optional

Table 83 provides a list of namespaces and their index used for BrowseNames in this
specification. The default namespace of this specification is not listed since all BrowseNames
without prefix use this default namespace.

Table 83 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/DI/ 2 2:DeviceRevision

OPC UA for IO-Link 101 Release 1.0

Annex A (normative): OPC UA for IO-Link Namespace and Mappings

A.1 Namespace and identifiers for OPC UA for IO-Link Information Model

This appendix defines the numeric identifiers for all the numeric NodeIds defined in this
specification. The identifiers are specified in a CSV file wi th the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an
Instance Node that appears in the specification and the Identifier is the numeric value for the
NodeId.

The BrowsePath for an Instance Node is constructed by appending the BrowseName of the
instance Node to the BrowseName for the containing instance or type. An underscore character
is used to separate each BrowseName in the path. Let’s take for example, the
IOLinkDeviceType ObjectType Node which has the RevisionID Property. The Name for the
RevisionID InstanceDeclaration within the IOLinkDeviceType declaration is:
IOLinkDeviceType_RevisionID.

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/IOLink/

The CSV released with this version of the specification can be found here:
http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLink.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLink.NodeIds.csv

A computer processible version of the complete Information Model defined in this specification
is also provided. It follows the XML Information Model schema syntax defined in OPC UA Part
6.

The Information Model Schema released with this version of the specification can be found
here:

http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLink.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the specification can be found
here:

http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLink.NodeSet2.xml

The NamespaceUri for all NodeIds generated based on an IODD is
http://opcfoundation.org/UA/IOLink/IODD/

The CSV released with this version of the specification for this NamespaceUri can be found
here:

http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLinkIODD.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLinkIODD.NodeIds.csv

A computer processible version of the Information Model for managing IODDs is also provided.
It follows the XML Information Model schema syntax defined in OPC UA Part 6.

The Information Model Schema released with this version of the specification can be found
here:

http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLinkIODD.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the specification can be found
here:

http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLinkIODD.NodeSet2.xml

http://opcfoundation.org/UA/IOLink/
http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLink.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLink.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLink.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLink.NodeSet2.xml
http://opcfoundation.org/UA/IOLink/IODD
http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLinkIODD.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLinkIODD.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/IOLink/1.0/Opc.Ua.IOLinkIODD.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/IOLink/Opc.Ua.IOLinkIODD.NodeSet2.xml

Release 1.0 102 OPC UA for IO-Link

A.2 Profile URIs for OPC UA for IO-Link Information Model

Table 84 defines the Profile URIs for the OPC UA for IO-Link Information Model companion
specification.

Table 84 – Profile URIs

Profile Profile URI

IO-Link Event Facet http://opcfoundation.org/UA-Profile/External/IOLink/IOLinkEventFacet

IO-Link Base Condition Facet http://opcfoundation.org/UA-Profile/External/IOLink/IOLinkBaseConditionFacet

IO-Link Alarm Facet http://opcfoundation.org/UA-Profile/External/IOLink/IOLinkAlarmFacet

IO-Link Base Profile http://opcfoundation.org/UA-Profile/External/IOLink/IOLinkBaseProfile

IO-Link Advanced Profile http://opcfoundation.org/UA-Profile/External/IOLink/IOLinkAdvancedProfile

OPC UA for IO-Link 103 Release 1.0

Annex B (informative): Aggregation as System Architecture Option

B.1 Overview

This specification defines an OPC UA AddressSpace to manage IO-Link Masters and their
connected IO-Link Devices. To manage the IO-Link Devices without detailed knowledge of the
device an IODD is needed to interpret the structures provided by the device. However,
managing IODDs might be hard for servers running on small embedded devices with very limited
resources. Therefore, this specification defines a server facet only providing the basic
functionality without IODD interpretation (see section 15.4.1). This allows the implementation
of such a facet with very limited resources, but requires that the client has knowledge about the
device, either implemented in the client or implicitly by the user of the client.

The following section describes a solution to combine the benefit of an IODD interpretation and
thus allowing full device access without detailed knowledge of the device by the user and the
implementation of an OPC UA Server on very limited resources, by adding an aggregating
server into the system providing the IODD based access.

B.2 System Architecture

The basic implementation of an OPC UA Server without IODD (see section 15.4.1) is done on
very limited resources, like for example the IO-Link Master itself. A system likely will have
several of those simple servers. In addition, an aggregating server implementing the IODD
management and interpretation capabilities (see section 15.4.2) as well accesses the simple
servers and adds the IODD management and interpretation capabilities on top. As the simple
server interface already allows ISDU access, the ISDU logic can be triggered by the aggregating
server. This aggregating server typically would have enough resources to manage a large
amount of IODDs, potentially even having access to get more IODDs by using tools like the
IODD finder. Users would access the aggregating server to get the IODD based information of
all connected IO-Link Masters. Figure 27 gives an example for such an architecture.

Figure 27 – System Architecture using an OPC UA aggregation server for IODD
capabilities (Example)

Release 1.0 104 OPC UA for IO-Link

Several variations of that approach are possible. The aggregating server might, in addition to
the OPC UA based sources also proprietarily access IO-Link Masters. There might be several
aggregating servers in a system, etc.

OPC UA for IO-Link 105 Release 1.0

Annex C (normative): EngineeringUnits

C.1 Overview

OPC UA defines a preferred namespace for EngineeringUnits. The mapping of IO-Link unitCode
to OPC UA EngineeringUnits uses the EngineeringUnits of the preferred OPC UA namespace,
when they are also defined. Otherwise, it uses its own namespace. The mapping is def ined in
a CSV document.

The CSV released with this version of the specification can be found here:
http://www.opcfoundation.org/UA/schemas/IOLink/1.0/EngineeringUnits.csv

NOTE The latest CSV that is compatible with this version of the specification can be found here:

http://www.opcfoundation.org/UA/schemas/IOLink/EngineeringUnits.csv

http://www.opcfoundation.org/UA/schemas/IOLink/1.0/EngineeringUnits.csv
http://www.opcfoundation.org/UA/schemas/IOLink/EngineeringUnits.csv











Copyright by:

IO-Link Community
Haid-und-Neu-Str. 7
76131 Karlsruhe
Germany
Phone: +49 (0) 721 / 96 58 590
Fax: +49 (0) 721 / 96 58 589
e-mail: info@io-link.com
http://www.io-link.com/
Order No: 10.212

F O U N D A T I O N

®

OPC Foundation
16101 N. 82nd Street, Suite 3B
Scottsdale, AZ 85260-1868
USA
Phone: +1 480 483-6644
Fax: +1 480 483-7202
e-mail: admin@opcfoundation.org
http://opcfoundation.org

http://www.io-link.com/
http://opcfoundation.org/
http://www.io-link.com/

